生物学和医学有什么区别

2024-05-18 11:42

1. 生物学和医学有什么区别

生物学是专门学习生物界的
而医学只是学习治疗方面的,它只属于生物学一部分

生物学和医学有什么区别

2. 生物学是学什么的?跟医学相关吗?

【生物学的概念】
即生命科学(life science/biology),概括地说,生物是研究生命现象和生命活动规律的科学。作为继物理、化学之后又一高速发展的学科,正朝着宏观和微观两个方向发展。宏观观方面已经发展到全球生态系统的研究;微观方面则向着分子方向发展。生物学与众多科学结合形成了种类繁多的边缘科学,呈辐射状发展。


【生物学 英语原文解释】

biology from the Greek words bios, meaning " life, " and logos, meaning "study" ; Biology is the study of life.

    生物学从最开始就有2个学派,一个叫博物学派,一个是实验学派。博物学派以生态学为代表,实验学派以遗传学和分子生物学为代表。

    目前国内外尚无明确一致的生命科学的定义。特别是对生命科学的范畴,即生命科学包括哪些学科没有明确一致的说法。但一般认为,生命科学是将生命世界(living world)作为一个整体来研究的一个科学分支,研究活着的生物(living organisms)和生命过程(life processes),包括生物科学(biological science)--即生物学(biology)及其分支即医药学、农林牧渔业、人类学、社会学等。生物学的分支有动物学、植物学、微生物学、解剖学、生理学、生物物理学、生物化学、细胞生物学、分子生物学、神经生物学、发育生物学、社会生物学等。生命科学中生物学及其分支是生物科学的基础科学(basic science)或纯科学(pure science),医药学和农林牧渔业等是生物科学的应用科学(applied science);很显然,生物科学属于自然科学,而人类学和社会学则属于人文社会科学。所以生命科学的范畴是比较大的,包括了自然科学和社会科学两大科学领域。但是,我国教育部1998年颁布的新的高等学校本科专业目录的理工科部分中与上述生命科学自然科学部分有关的专业有生物学、生物学技术、医学、药学、农学等等,分别属于基础生物科学或应用生物科学范畴。


【生物学 总结】

    生物学是研究生物各个层次的种类、结构、功能、行为、发育和起源进化以及生物与周围环境的关系的科学。人也是生物的一种,也是生物学的研究对象。 

    20世纪40年代以来,生物学吸收了数学、物理学和化学的成就,逐渐发展成一门精确的、定量的、深入到分子层次的科学。

    人们已经认识的生命是物质的一种运动状态。生命的基本单位是细胞,它是由蛋白质、核酸、脂类等生物大分子组成的物质系统。生命现象就是这一复杂系统中物质、能和信息三个量综合运动与传递的表现。

    生命有许多无生命物质所不具备的特性。比如:生命能够在常温常压下合成多种有机化合物;能够以远远超出机器的效率来利用环境中的物质和制造体内的各种物质;能以极高的效率储存信息和传递信息;具有自我调节功能和自我复制能力;以不可逆的方式进行着个体发育和物种的演化等等。揭示生命过程中的机制具有巨大的理论和实践意义。



【生物学的研究对象】


    地球上现存的生物估计有200万~450万种;已经灭绝的种类更多,估计至少也有1500万种。从北极到南极,从高山到深海,从冰雪覆盖的冻原到高温的矿泉,都有生物的存在。它们具有多种多样的形态结构,它们的生活方式也变化多端。

    从生物的基本结构单位——细胞的水平来考察,有的生物还不具备细胞形态;在已经具有细胞形态的生物中,有原核细胞构成的、有由真核细胞构成的;从组织结构看,有单细胞生物、多细胞生物。而多细胞生物又根据组织器官的分化和发展而分为多种类型;从营养方式来看,有光和自养、吸收异养、腐蚀性异养、吞食异养;从生物在生态系统的作用看,有生产者、消费者、分解者等等。

    生物学家根据生物的发展历史、形态结构特征、营养方式以及它们在生态系统中的作用等,将生物分成若干界。现在比较通行的认识是将地球上的生物界划分为五界:细菌、蓝菌等原核生物是原核生物界;单细胞的真核生物是原生生物界;光和自养的植物界;吸收异养的真菌界;吞食异养的动物界。

    病毒是一种非细胞生命形态,它由一个核酸长链和蛋白质外壳构成,病毒没有自己的代谢机构,没有酶系统。因此病毒离开了宿主细胞,就成了没有任何生命活动、也不能独立自我繁殖的化学物质。一旦进入宿主细胞后,它就可以利用细胞中的物质和能量以及复制、转录和转译的能力,按照它自己的核酸所包含的遗传信息产生和它一样的新一代病毒。

    病毒基因同其他生物的基因一样,也可以发生突变和重组,因此也是可以演化的。因为病毒没有独立的代谢机构,不能独立的繁殖,因此被认为是一种不完整的生命形态。近年来发现了比病毒还要简单的类病毒,它是小的RNA分子,没有蛋白质外壳,但它可以在动物身上造成疾病。这些不完整的生命形态的存在说明无生命与有生命之间没有不可逾越的鸿沟。

    原核细胞和真核细胞是细胞的两大基本形态,它们反映了细胞进化的两个阶段。把具有细胞形态的生物划分原核生物和真核生物,是现代生物学的一大进展。原核细胞的主要特征是没有线粒体、质体等模细胞器,染色体只是一个环状的DNA分子,不含组蛋白及其它蛋白质,没有核膜。原和生物主要是细菌。

    真核细胞是结构更为复杂的细胞。它有线粒体等膜细胞器,有包以双层膜的细胞核把核内的遗传物质与细胞质分开。DNA是长链分子,狱卒蛋白以及其他蛋白合成染色体。这核细胞可以进行有丝分裂和减数分裂,分裂的结果是复制的染色体均等地分配到子细胞中。原生生物是最原始的真核生物。

    植物是以光和自养为主要营养方式的真核生物。典型植物细胞都含有液泡核以纤维素为主要成分的细胞壁。细胞质中由进行光合作用的细胞器—叶绿体。植物的光合作用都是以水为电子供体的,光合自养是植物的主要营养方式,少数的高等植物是寄生的,还有更少数的植物能够捕捉小昆虫,进行异养吸收。

    植物从单细胞绿藻到被子植物是沿着适应光合作用的的方向发展的。高等植物中发生了植物的根(固定和吸收器官)、茎(支持器官)、叶(光和器官)的分化。叶柄和众多分支的茎支持片状的叶向四面展开,以获得最大的光照和吸收面积,细胞也逐渐分化成专门用于光合作用、输导和覆盖等各种组织。大多数植物的通过有性生殖,形成配子体和孢子体世代交替的生活史。植物是生态系统中最主要的生产者,也是地球上氧气的主要来源。

    真菌是以吸收为主要营养方式的真核生物。真菌有细胞壁,细胞壁含有几丁质,也含有纤维素。几丁质是一种含氨基葡萄糖的多糖,是昆虫等动物骨骼的主要成分,植物细胞不含几丁质。真菌没有质体和光合色素。真菌的繁殖能力很强,繁殖方式多样,主要是以无性或有性生殖产生的各种孢子作为繁殖单位。真菌分布非常广泛,在生态系统中,真菌是重要的分解者。

    动物是以吞食为营养方式的真核生物。吞食异养包括捕获、吞食、消化和吸收等一些列复杂的过程。动物体的结构是沿着适应吞食异养的方向发展的。单细胞动物吞入食物后形成食物泡。食物在食物泡中被消化,然后透过膜而进入细胞质中,细胞质中溶酶体与之融合,就是细胞内消化。

    多细胞动物在进化过程中,细胞内消化逐渐为细胞外消化所取代,食物被捕获后在消化道内由消化腺分泌酶而被消化,消化后的小分子营养物经过消化道吸收,并通过环系循统输送到身体的各种细胞中。

    与此相适应,多细胞动物逐步形成了复杂的排泄系统、外呼吸系统以及复杂的感觉系统、神经系统、内分泌系统和运动系统等。在全部生物中,只有动物的身体构造发展到如此复杂的高级水平。在生态系统中,动物是有机食物的消费者。

    在生命发展的早期,生态系统是由生产者和分解者组成的两环系统。随着真核生物特别是动物的产生和发展,两环生态系统发展成有生产者、分解者和消费者所组成的三环系统。出现了今日丰富多彩的生物世界。

    从类病毒、病毒到植物、动物,生物拥有众多特征鲜明的类型。各种类型之间又有一系列的中间环节,形成连续的谱系。同时由营养方式决定的三大进化方向,在生态系统中呈现出相互作用的空间关系。因而,进化既是时间过程,又是空间发展过程。生物从时间的历史渊源和空间的生活关系上都是一个整体。



【生物的特征】


    生物不仅具有多样性,而且具有一些共同的特征和属性。

 生物的多样性分为物种多样性、遗传多样性和生态系统多样性,其中,遗传多样性是物种多样性的基础.

    组成生物体的生物大分子的结构和功能,在原则上是相同的。比如各种生物的蛋白质的单体都是氨基酸,种类不过20种左右,它们的功能对所有的生物都是相同的;在不同生物体内基本代谢途径也是相同的等等。这就是生物化学的同一性。同一性深刻的揭示了生物的统一性。

    生物具有多层次的结构模式。对于病毒以外的一切生物都是由细胞组成的,细胞是由大量原子和分子所组成的非均质的系统。

    从结构上看,细胞是由蛋白质、核酸、脂类、多糖等组成的多分子动态体系;从信息论观点看,细胞是遗传信息和代谢信息的传递系统;从化学观点看,细胞是由小分子合成的复杂大分子;从热力学上看,细胞是远离平衡的开放系统……

    除细胞外,生物还有其他结构单位。细胞之下有细胞器、分子、原子,细胞之上有组织、器官、器官系统、个体、生态系统、生物圈等等。生物的各种结构单位,按照复杂程度和逐级结合的关系而排列成一系列的等级,这就是结构层次。较高层次上会出现许多较低层次所没有的性质和规律。

    其他的还有很多,比如生物的有序性和耗散结构、生物的稳定性,生命的连续性,个体发育,生物的进化,生态系统中的相互关系等等。

    这些都说明,尽管生物世界存在惊人的多样性,但所有的生物都有共同的物质基础,遵循共同的规律。生物就是这样一个统一而有多样的物质世界。

    和其他学科一样,生物学依据自己所研究的对象,也有一些基本的研究方法——观察描述的方法、比较的方法、实验的方法等等,也都具有自己的特点。对于生物学来说,既需要有精确的实验分析,又需要从整体和系统的角度来观察生命,生物学积累了大量关于各种层次生命系统及其组成部分的资料。今天对于生命系统的规律作出定量的理论研究已经提到日程上来,系统论方法将作为新的研究方法而受到人们的重视。



【生物学的分支】


    早期的生物学主要是对自然的观察和描述,是关于博物学和形态分类的研究。所以生物学最早是按类群划分学科的,如植物学、动物学、为生物学等。由于生物种类的多样性,也由于人们对生物学的了解越来越多,学科的划分也就越来越细,一门学科往往在划分为若干学科。

    按生物类群划分学科,有利于从各个侧面认识某一个自然类群的生物特点和规律性。但无论研究对象是什么,都不外乎分类、形态、生理、生化、生态、遗传、进化等等。

    生物在地球历史中有着很长的发展历史,大约有1500万种生物已经灭绝,它们的遗骸保存在地层中形成化石。古生物学专门通过化石研究历史上的生物;

    生物的类群是如此的繁多,需要一个专门的学科来研究类群的划分,就产生了分类学;

    形态学是生物学中研究动植物的形态结构的学科;随着显微镜的使用,形态学又深入到超微结构的领域,组织学和细胞学也就相应的建立起来了;

    生理学是研究生物机能的学科,生理学的研究方法是以实验为主;

    遗传学是研究生物性状的遗传和变异,阐明其规律的学科;

胚胎学是研究生物个体发育的学科;

    生态学是研究生物与生物之间以及生物与环境之间的关系的学科。研究范围包括个体、种群、群落、生态系统以及生物圈等层次。揭示生态系统中食物链、生产力、能量流动和物质循环的有关规律;

    生物化学是研究生命物质的化学组成和生物体各种化学过程的学科,是进入20世纪以后迅速发展起来的一门学科。生物化学的成就提高了人们对生命本质的认识。生物化学侧重于生命的化学过程、参与这一过程的物质、产品以及酶的作用机制的研究。分子生物学是从研究生物大分子的结构发展起来的,现在更多的仍是研究生物大分子的结构与功能的关系、以及基因的表达、调控等方面的机制;

    生物物理学是用物理薛的概念和方法研究生物的结构、生命活动的物理和物理化学过程的学科。早期生物物理学的研究是从生物发光、生物电等问题开始的。随着生物学、物理学的发展,新概念的产生和介入,生物物理的研究范围和水平不断加深加宽。产生了量子生物学、生物大分子晶体结构以及生物控制论等小分支;

   生物数学是数学和生物学结合的产物,它的任务是研究生命过程中的数学规律。

    生物界是一个多层次的复杂系统,为了揭示某一层次的规律以及和其他层次的关系,出现了按层次划分的学科并且越来越受人们的重视。比如:分子生物学、细胞生物学、个体生物学、种群生物学等等。

    总之,生物学中一些新的学科在不断的分化出来,另一些学科又在走向融合。生物学分可的这种局面,反映了生物学极其丰富的内容,也反映了生物学蓬勃发展的景象。



【研究生物学的意义】


    生物与人类生活的许多方面都有着非常密切的关系。生物学作为一门基础科学,传统上一直是农业和医学的基础,涉及种植业、畜牧业、养殖业、医疗、制药、卫生等等。随着生物学理论与方法的不断进步,它的应用领域也在不断扩大。现在,生物学的影响已经扩展到食品、化工、环境保护、能源、冶金等方面。如果考虑仿生学的因素,它还影响到了机械、电子技术、信息技术等等诸多领域的发展。



【生物学分支学科】


    植物学、孢粉学、动物学、微生物学、细胞生物学、分子生物学、生物分类学、习性学、生理学、细菌学、微生物生理学、微生物遗传学、土壤微生物学、细胞学、细胞化学、细胞遗传学、免疫学、胚胎学、优生学、悉生生物学、遗传学、分子遗传学、生态学、仿生学、生物物理学、生物力学、生物力能学、生物声学、生物化学、生物数学

与生物学相关的基础学科:化学,自然地理学,物理学,数学 ,语文

3. 医学生物学

首先要有兴趣呢~~~
然后就是坚持了,要集中精神多看几遍,
因为一开始这样做会很枯燥,而且忘得很快,自己也会觉得没有什么用处,
所以一定要坚持哦~~
加油!!

医学生物学

4. 医学生物学研究的主要内容与医学有何联系

医学生物学研究侧重于医学的生物学基础,因为在某种意义上讲,医学是生物学的应用学科,尤其是生物化学和生理学这样的生物学基础学科。
在这样的前提下,医学生物学研究的范畴更广,机理更深入,只有这样才会不断出现新的医学诊断和治疗手段。想象一下DNA发现之前医学的状况,而DNA的研究则可归类为医学生物学研究。
生物学中有很多分支学科是按照生命运动所具有的属性、特征或者生命过程来划分的。

生物学形态学
形态学是生物学中研究动、植物形态结构的学科。在显微镜发明之前,形态学只限于对动、植物的宏观的观察,如大体解剖学、脊椎动物比较解剖学等。比较解剖学是用比较的和历史的方法研究脊椎动物各门类在结构上的相似与差异,从而找出这些门类的亲缘关系和历史发展。显微镜发明之后,组织学和细胞学也就相应地建立起来,电子显微镜的使用,使形态学又深入到超微结构的领域。但是形态结构的研究不能完全脱离机能的研究,形态学早已跳出单纯描述的圈子,而使用各种先进的实验手段了。

生物学生理学
生理学是研究生物机能的学科,生理学的研究方法是以实验为主。按研究对象又分为植物生理学、动物生理学和细菌生理学。植物生理学是在农业生产发展过程中建立起来的。生理学也可按生物的结构层次分为细胞生理学、器官生理学、个体生理学等。在早期,植物生理学多以种子植物为研究对象;动物生理学也大多联系医学而以人、狗、兔、蛙等为研究对象;以后才逐渐扩展到低等生物的生理学研究,这样就发展了比较生理学。

生物学遗传学
是研究生物性状的遗传和变异,阐明其规律的学科。遗传学是在育种实践的推动下发展起来的。1900年孟德尔的遗传定律被重新发现,遗传学开始建立起来。以后,由于T.H.摩尔根等人的工作,建成了完整的细胞遗传学体系。瑞士生物学家米舍尔首次发现在细胞核中有一种含磷量极高的物质。20年以后,这种化学成分才被定名为核酸。后来,经过许多科学家的努力,才发现核酸有两种,一种是脱氧核糖核酸,也就是DNA,具有储存和遗产信息的作用,另一种是核糖核酸,简称RNA,在遗传信息表达的过程中起着重要的作用。1953年,遗传物质DNA分子的结构被揭示,遗传学深入到分子水平。基因组计划的进展,从基因组、蛋白质组到代谢组的遗传信息传递,以及细胞信号传导、基因表达调控网络的研究,1995年系统遗传学的概念、词汇与原理于中科院提出与发表。遗传信息的传递、基因的调控机制已逐渐被了解,遗传学理论和技术在农业、工业和临床医学实践中都在发挥作用,同时在生物学的各分支学科中占有重要的位置。生物学的许多问题,如生物的个体发育和生物进化的机制,物种的形成以及种群概念等都必须应用遗传学的成就来求得更深入的理解。

生物学胚胎学
是研究生物个体发育的学科,原属形态学范围。1859年达尔文进化论的发表大大推动了胚胎学的研究。19世纪下半叶,胚胎发育以及受精过程的形态学都有了详细精确的描述。此后,动物胚胎学从观察描述发展到用实验方法研究发育的机制,从而建立了实验胚胎学。个体发育的研究采用生物化学方法,吸收分子生物学成就,进一步从分子水平分析发育和性状分化的机制,并把关于发育的研究从胚胎扩展到生物的整个生活史,形成发育生物学。

生物学生态学
是研究生物与生物之间以及生物与环境之间的关系的学科。研究范围包括个体、种群、群落、生态系统以及生物圈等层次。揭示生态系统中食物链、生产力、能量流动和物质循环的有关规律,不但具有重要的理论意义,而且同人类生活密切相关。生物圈是人类的家园。人类的生产活动不断地消耗天然资源,破坏自然环境。特别是进入20世纪以后,由于人口急剧增长,工业飞速发展,自然环境遭到空前未有的破坏性冲击。保护资源、保持生态平衡是人类当前刻不容缓的任务。生态学是环境科学的一个重要组成成分,所以也可称环境生物学。人类生态学涉及人类社会,它已超越了生物学范围,而同社会科学相关联。

生物学生物物理学
生物物理学是用物理学的概念和方法研究生物的结构和功能、研究生命活动的物理和物理化学过程的学科。早期生物物理学的研究是从生物发光、生物电等问题开始的,此后随着生物学的发展,物理学新概念,如量子物理、信息论等的介入和新技术如 X衍射、光谱、波谱等的使用,生物物理的研究范围和水平不断加宽加深。一些重要的生命现象如光合作用的原初瞬间捕捉光能的反应,生物膜的结构及作用机制等都是生物物理学的研究课题。生物大分子晶体结构、量子生物学以及生物控制论等也都属于生物物理学的范围。

生物学生物数学
生物数学是数学和生物学结合的产物。它的任务是用数学的方法研究生物学问题,研究生命过程的数学规律。早期,人们只是利用统计学、几何学和一些初等的解析方法对生物现象做静止的、定量的分析。20世纪20年代以后,人们开始建立数学模型,模拟各种生命过程。生物数学在生物学各领域如生理学、遗传学、生态学、分类学等领域中都起着重要的作用,使这些领域的研究水平迅速提高,另一方面,生物数学本身也在解决生物学问题中发展成一独立的学科。
有少数生物学科是按方法来划分的,如描述胚胎学、比较解剖学、实验形态学等。按方法划分的学科,往往作为更低一级的分支学科,被包括在上述按属性和类型划分的学科中。
生物界是一个多层次的复杂系统。为了揭示某一层次的规律以及和其他层次的关系,出现了按层次划分的学科并且愈来愈受人们的重视。

生物学分子生物学
分子生物学是研究分子层次的生命过程的学科。它的任务在于从分子的结构与功能以及分子之间的相互作用去揭示各种生命过程的物质基础。现代分子生物学的一个主要分科是分子遗传学,它研究遗传物质的复制、遗传信息的传递、表达及其调节控制问题等。

生物学细胞生物学
细胞生物学是研究细胞层次生命过程的学科,早期称细胞学是以形态描述为主的。以后,细胞学吸收了分子生物学的成就,深入到超微结构的水平,主要研究细胞的生长、代谢和遗传等生物学过程,细胞学也就发展成细胞生物学了。
个体生物学是研究个体层次生命过程的学科。在复式显微镜发明之前,生物学大都是以个体和器官系统为研究对象的。研究个体的过程有必要分析组成这一过程的器官系统过程、细胞过程和分子过程。但是个体的过程又不同于器官系统过程、细胞过程或分子过程的简单相加。个体的过程存在着自我调节控制的机制,通过这一机制,高度复杂的有机体整合为高度协调的统一体,以协调一致的行为反应于外界因素的刺激。个体生物学建立得很早,直到现在,仍是十分重要的。

5. 生物科学与生物医学专业有何区别

家长和同学们可以通过搜索微信公众号;陈晟老师课堂。陈晟老师课堂专注解决在高考志愿填报中高校如何选,专业哪些实力比较强,志愿如何排序,通过为孩子测评解读适合的专业、大学,为考生报考大学保驾护航。

生物科学与生物医学专业有何区别

6. 医学?生物学?

你的志向挺好也挺大的,要完成你的志向是一定要上研甚至上博的。本科学的东西其实是很宽泛的东西,真正想靠那个搞科技研究造福人类还差得太远。
    如果是侧重研究,建议学生物学,上研的时候有更具体的方向可选,你想研究断臂再生可以选干细胞、医学分子生物学等等,生物学做为一个一级学科,本科教学中学得东西很多,各方面的理论、知识、操作技能都会有接触,但都不深入。不过这样子你在上研选方向的时候空间是比较大的,适合于能耐得住寂寞想继续深造的人。
    学医侧重操作和技术性,它本科教学就把你教的差不多了,学医的大的目的方向就是应用。要说将来想搞科学研究想在器官再生等方面有理论突破可能有困难,但是你要是想本科完了就赶快工作那还是学医吧,学医的话本科学的就能够工作了,深造的话大概就是研究医理、病理,研究创新一些疾病的治疗方案了。
    都是个人的一些看法,谨供参考啊,呵呵.

7. 生物医学和生物医学工程有什么区别?

生物医学和生物医学工程的区别主要有以下几点:
1.两者的学科门类不同:
生物医学是理科门下的一门学科,注重的是科研研究和医学应用这一方面的。而生物医学工程是工科门类下的一门学科。比较注重实践应用,对于科研方面不太注重。
2.两者的涉及领域不同:
生物医学是对生物医学信息,医学影像技术,基因技术,纳米治疗技术等方面的学术研究。而生物医学工程是属于工程学科,所以注重的是医学领域的制造业,如:医学制药,医学仪器制造等。
3.两者的发展时间不同:
生物医学的发展较为久远,国内有着比较丰富的教育资源和教育经验,而生物医学工程是一门理,工,医,生物等学科高度交叉而成的一门新兴学科,国内的发展时间还不够,目前正在加速发展中。
4.两者的就业范围不同:
生物医学的就业一般是聚集在医学这一领域,但是生物医学工程由于所接受的知识较为丰富全面,所以可选择的就业范围较广,机械制造,智能医疗,仪器研发等工作。

参考资料来源:
百度百科-生物医学工程
百度百科-生物医学

生物医学和生物医学工程有什么区别?

8. 医学和生物学?

没有什么区别的吧~~~~

就比如说,协和医院的学生,本科的时候要在清华生物系读两年半,与生物系的同学一起学的分子、细胞生物学的课程。

如果是本科以上的教育的话,可能有不同的侧重性,医学应该更加偏重于临床,生物学应该更加偏重于研究