病毒基因重配 名词解释

2024-05-05 09:25

1. 病毒基因重配 名词解释

基因重配(Reassortment) 是指遗传性相关的多组分基因组病毒间的整条RNA分子进行交换。因为重配只是RNA片段的简单交换,所以其发生频率很高,如人和动物流感病毒间不断的重配产生抗原性漂移可引起新的人类疾病的爆发。
病毒基因重配就是指病毒基因的基因重配。

病毒基因重配 名词解释

2. 病毒癌基因名词解释

什么是病毒癌基因和细胞癌基因
癌基因(oncogene)可以分为两大类,即病毒癌基因和细胞转化基因.编码病毒癌基因的主要有DNA病毒和RNA病毒,细胞转化基因能使正常细胞转化为肿瘤细胞.
原癌基因(proto-oncogene)是维持机体正常生命活动所必须的,进化上高度保守,当其非正常激活时,细胞过度增殖,形成肿瘤.1.癌基因(oncogene):能在体外引起细胞转化,在体内诱发肿瘤的基因.
2.癌基因的分类:
(1)病毒癌基因(Viral oncogene,v-onc ):
病毒(DNA病毒和RNA病毒)中的癌基因.
(2)细胞癌基因(Cellular oncogene,c-onc)(细胞转化基因):
细胞中的癌基因.
3.原癌基因(proto-oncogene,pro-onc):存在于生物正常细胞基因组中,与癌基因高度同源的DNA序列.
原癌基因对维持细胞正常功能有重要作用,当其受到致癌因素作用被活化并发生异常时,可导致细胞癌变,即原癌基因→细胞癌基因.
4.RNA病毒(逆/反转录病毒)癌基因可能起源于原癌基因:
(1)原癌基因在生物界分布广泛且高度保守.
线虫(c.elegans)和果蝇等并不被反转录病毒感染!但这些动物的基因组中也具有与高等动物癌基因同源的基因;
(2)逆转录病毒癌基因对病毒本身无关紧要.
(3)各种动物的pro-onc的数目和位置比较固定,而反转录病毒中的v-onc数目和位置是不固定.
(4)多数高等动物的原癌基因含有内含子,而反转录病毒的癌基因则无内含子.
(5)动物的pro-onc可以为反转录病毒所转导.
最初的反转录病毒不带癌基因.当其侵入并整合进宿主细胞后,病毒DNA切离时切点不准确,往往会把宿主细胞DNA一起切掉一部分带走,后经加工修饰而具有了致癌性.此时的反转录病毒再次入侵新宿主时即可引起宿主细胞的癌变或转化.

3. 基因的名词解释

基因释义:存在于细胞的染色体上的生物体遗传的基本单位。
基因(遗传因子)是产生一条多肽链或功能RNA所需的全部核苷酸序列。基因支持着生命的基本构造和性能。储存着生命的种族、血型、孕育、生长、凋亡等过程的全部信息。环境和遗传的互相依赖,演绎着生命的繁衍、细胞分裂和蛋白质合成等重要生理过程。生物体的生、长、衰、病、老、死等一切生命现象都与基因有关。它也是决定生命健康的内在因素。因此,基因具有双重属性:物质性(存在方式)和信息性(根本属性)。
带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。组成简单生命最少要265到350个基因。(这涉及到了基因工作组的力量,人类的基因工作组与果蝇的基本相似)。

一、基因分类
1.结构基因
基因中编码RNA或蛋白质的碱基序列。
(1)原核生物结构基因:连续的,RNA合成不需要剪接加工;
(2)真核生物结构基因:由外显子(编码序列)和内含子(非编码序列)两部分组成。
2.非结构基因
结构基因两侧的一段不编码的DNA片段(即侧翼序列),参与基因表达调控。
(1)顺式作用元件:能影响基因表达,但不编码RNA和蛋白质的DNA序列;
其中包括:
启动子:RNA聚合酶特异性识别结合和启动转录的DNA序列。有方向性,位于转录起始位点上游。
上游启动子元件:TATA盒上游的一些特定DNA序列,反式作用因子可与这些元件结合,调控基因的转录效率。
反应元件:与被激活的信息分子受体结合,并能调控基因表达的特异DNA序列。
增强子:与反式作用因子结合,增强转录活性,在基因任意位置都有效,无方向性。
沉默子:基因表达负调控元件,与反式作用因子结合,抑制转录活性。
Poly(A)加尾信号:结构基因末端保守的AATAAA顺序及下游GT或T富含区,被多聚腺苷酸化特异因子识别,在mRNA 3′端加约200个A。
(2)反式作用因子:能识别和结合特定的顺式作用元件,并影响基因转录的一类蛋白质或RNA。
二、类别区分

60年代初F.雅各布和J.莫诺发现了调节基因。把基因区分为结构基因和调节基因是着眼于这些基因所编码的蛋白质的作用:凡是编码酶蛋白、血红蛋白、胶原蛋白或晶体蛋白等蛋白质的基因都称为结构基因;凡是编码阻遏或激活结构基因转录的蛋白质的基因都称为调节基因。但是从基因的原初功能这一角度来看,它们都是编码蛋白质。根据原初功能(即基因的产物)基因可分为:
①编码蛋白质的基因。
②没有翻译产物的基因。
③不转录的DNA区段。
一个生物体内的各个基因的作用时间常不相同,有一部分基因在复制前转录,称为早期基因;有一部分基因在复制后转录,称为晚期基因。一个基因发生突变而使几种看来没有关系的性状同时改变,这个基因就称为多效基因。
数目不同生物的基因数目有很大差异,已经确知RNA噬菌体MS2只有3个基因,而哺乳动物的每一细胞中至少有100万个基因。但其中极大部分为重复序列,而非重复的序列中,编码肽链的基因估计不超过10万个。除了单纯的重复基因外,还有一些结构和功能都相似的为数众多的基因,它们往往紧密连锁,构成所谓基因复合体或叫做基因家族。
等位基因:位于一对同源染色体的相同位置上控制某一性状的不同形态的基因。不同的等位基因产生例如发色或血型等遗传特征的变化。等位基因控制相对性状的显隐性关系及遗传效应,可将等位基因区分为不同的类别。在个体中,等位基因的某个形式(显性的)可以比其他形式(隐性的)表达得多。等位基因(gene)是同一基因的另外“版本”。例如,控制卷舌运动的基因不止一个“版本”,这就解释了为什么一些人能够卷舌,而一些人却不能。有缺陷的基因版本与某些疾病有关,如囊性纤维化。值得注意的是,每个染色体(chromosome)都有一对“复制本”,一个来自父亲,一个来自母亲。这样,我们的大约3万个基因中的每一个都有两个“复制本”。这两个复制本可能相同(相同等位基因allele),也可能不同。下图显示的是一对染色体,上面的基因用不同颜色表示。在细胞分裂过程中,染色体的外观就是如此。如果比较两个染色体(男性与女性)上的相同部位的基因带,你会看到一些基因带是相同的,说明这两个等位基因是相同的;但有些基因带却不同,说明这两个“版本”(即等位基因)不同。
拟等位基因(pseudoalleles):表型效应相似,功能密切相关,在染色体上的位置又紧密连锁的基因。它们象是等位基因,而实际不是等位基因。
传统的基因概念由于拟等位基因现象的发现而更趋复杂。摩根学派在其早期的发现中特别使他们感到奇怪的是相邻的基因一般似乎在功能上彼此无关,各行其是。影响眼睛颜色、翅脉形成、刚毛形成、体免等等的基因都可能彼此相邻而处。具有非常相似效应的“基因”一般都仅仅不过是单个基因的等位基因。如果基因是交换单位,那就绝不会发生等位基因之间的重组现象。事实上摩根的学生在早期(1913;1916)试图在白眼基因座位发现等位基因的交换之所以都告失败,后来才知道主要是由于试验样品少。然而自从斯特体范特(1925)提出棒眼基因重复的不均等交换学说以及布里奇斯(1936)根据唾液腺染色体所提供的证据支持这学说之尼,试图再一次在仿佛是等位基因之间进行重组的时机已经成熟。Oliver(1940)首先取得成功,在普通果蝇的菱形基因座位上发现了等位基因不均等交换的证据。两个不同等位基因(Izg/Izp)被标志基因拚合在一起的杂合子以0.2%左右的频率回复到野生型。标志基因的重组证明发生了“等位基因”之间的交换。
非常靠近的基因之间的交换只能在极其大量的试验样品中才能观察到,由于它们的正常行为好像是等位基因,因此称为拟等位基因(Lewis,967)。它们不仅在功能上和真正的等位基因很相似,而且在转位(transpo-sition)后能产生突变体表现型。它们不仅存在于果蝇中,而且在玉米中也已发现,特别在某些微生物中发现的频率相当高。分子遗传学对这个问题曾有很多解释,然而由于对真核生物的基因调节还知之不多,所以还无法充分了解。
位置效应的发现产生了深刻影响。杜布赞斯基在一篇评论性文章中曾对此作出下面的结论;“一个染色体不单是基因的机械性聚合体,而且是更高结构层次的单位……染色体的性质由作为其结构单位的基因的性质来决定;然而染色体是一个合谐的系统,它不仅反映了生物的历史,它本身也是这历史的一个决定因素”(Dobzhaansky,1936:382)。
有些人并不满足于这种对基因的“串珠概念”的温和修正。自从孟德尔主义兴起之初就有一些生物学家(例如Riddle和Chiid)援引了看来是足够份量的证据反对基因的颗粒学说。位置效应正好对他们有利。Goldschmidt(1938;1955)这时变成了他们的最雄辩的代言人。他提出一个“现代的基因学说”(1955:186)来代替(基因的)颗粒学说。按照他的这一新学说并没有定位的基因而只有“在染色体的一定片段上的一定分子模式,这模式的任何变化(最广义的位置效应)就改变了染色体组成部分的作用从而表现为突变体。”染色体作为一个整体是一个分子“场”,习惯上所谓的基因是这个场的分立的或甚至是重叠的区域;突变是染色体场的重新组合。这种场论和遗传学的大量事实相矛盾因而未被承认,但是像Goldschmidt这样一位经验丰富的知名遗传学家竟然如此严肃地提出这个理论这件事实就表明基因学说还是多么不巩固。从1930年代到1950年代所发表的许多理论性文章也反映了这一点(Demerec,1938,1955;Muller,1945;Stadler,1954)。
复等位基因:基因如果存在多种等位基因的形式,这种现象就称为复等位基因(multiple allelism)。任何一个二倍体个体只存在复等位基中的二个不同的等位基因。
在完全显性中,显性基因中纯合子和杂合子的表型相同。在不完显性中杂合子的表型是显性和隐性两种纯合子的中间状态。这是由于杂合子中的一个基因无功能,而另一个基因存在剂量效应所致。完全显性中杂合体的表型是兼有显隐两种纯合子的表型。此是由于杂合子中一对等位基因都得到表达所致。
比如决定人类ABO血型系统四种血型的基因IA、IB、i,每个人只能有这三个等位基因中的任意两个。

基因的名词解释

4. 基因组名词解释

在分子生物学和遗传学领域,基因组是指生物体所有遗传物质的总和。这些遗传物质包括DNA或RNA(病毒RNA)。

基因组包括编码DNA和非编码DNA、线粒体DNA和叶绿体DNA。

5. 基因组学名词解释

基因组学名词解释如下:
基因组学的概念最早于1986年由美国遗传学家Thomas H. Roderick提出。基因组学是对生物体所有基因进行集体表征、定量研究及不同基因组比较研究的一门交叉生物学学科。基因组学主要研究基因组的结构、功能、进化、定位和编辑等,以及它们对生物体的影响。
相关内容:
功能基因组学
功能基因组学是分子生物学的一个领域,它试图利用基因组项目(如基因组测序项目)产生的大量数据来描述基因(和蛋白质)的功能和相互作用 。
功能基因组学侧重于基因转录、翻译和蛋白质-蛋白质相互作用的动态变化,与基因组提供的DNA序列或结构等静态信息截然相反。
功能基因组学试图从基因、RNA转录本和蛋白质产品三个水平上回答有关DNA功能的问题。功能基因组学研究的一个关键特征是它们对这些问题的全基因组方法,通常涉及高通量方法,而不是传统的“个案基因”方法。

基因组学的一个主要分支仍然关注于对各种生物体基因组的测序,但全基因组的知识为功能基因组学关注各种条件下基因表达的模式创造了可能。涉及到的最重要的工具是芯片技术和生物信息学。

基因组学名词解释

6. 病毒学名词解释

 病毒学是以地球上最微小的非细胞生物病毒为研究对象的一门科学,作为地球生物圈中的一类生物因子,人类对病毒的本质及其生命规律的认识,也已经经历了一个世纪,病毒学获得了巨大的发展,现已成为生命科学领域中一门重要的分支学科。                              
       1.内吞作用(pinocytosis) 病毒从吸附的细胞膜转入细胞浆并与溶酶体融合而形成吞噬泡,核衣壳从吞噬泡释放出来的过程。它是病毒穿入细胞的主要形式。
  2.CD4抗原 采用单克隆抗体在TH细胞中检定的一种存在于细胞表面的蛋白;这一抗原也可在身体的某些其他细胞膜上存在。
  3.20干扰素(interferon) 有细胞产生的一类细胞素,可以保护其他细胞免遭病毒侵犯,并有抑制细胞分裂活性和棉衣调节活性等。
  4.复制型(replicative form) 核酸在其复制时的一种结构,常指单链DNA和拷贝。
  5.复制中间体(replicative intermediate) 在病毒复制过程中,依靠模板分子复制的某些单链互补的新生核酸分子。
  6.毒粒(virion)是病毒在复制过程中的一种完整的成熟的病毒颗粒,有固定的形态和大小,而且一般都有侵染性。所以说一般具有侵染性是因为有些病毒的基因组核酸是分节段的,如雀麦花叶病毒的基因组核酸有四种。而且RNA1、RNA2和RNA3、RNA4分装在大小形状相同的三种球形颗粒中,只有三种颗粒混合,才具有侵染性。
  7.外壳(capsid) 是由多个病毒蛋白亚基组成的包裹在病毒基因组核酸外面的结构。
  8.壳粒(capsomer) 组成外壳的结构亚基,并非总是均匀分布的,往往聚集成群体,二个、三个、五个甚至六个亚基聚在一起,用负染法在电镜下所分辨开的一个个亚基,可能并非单个结构亚基,而是它们的群体,实际上是形态亚基称之为壳粒。
  9.包膜(envelop) 大多数动物病毒,在毒粒外被有由糖蛋白,脂肪所形成的外膜,称之为包膜。糖蛋白在膜上往往形成各种形状的突起,包膜在识别寄主、侵入寄主细胞,病毒的抗原性方面起重要作用。
      10.二十面体(icosahedron) 一种有12个角顶及20个面的对成的多面体,其每一个面是一个等边三角形;经常用来描述病毒的结构。
  11.亚病毒(subviruses) 不具有完整的病毒结构的一类病毒称之为亚病毒,包括类病毒、卫星RNA、朊病毒。
  12.株系(strain) 病毒经过生物化学物理等因素的作用后,是病毒致病力、寄主范围、抗原特异性、传播特性甚至粒体形状发生了改变,这些性状变异了的病毒粒体称为株系。
  13.准种(quasispecies) RNA复制酶的低保真性决定了RNA病毒没有固定序列的基因组,由相关基因组构成的异质性群体为准种。
  14.感染周期(infection cycle) 病毒完成整个感染的过程,包括识别、吸附、入侵、生物大分子的合成、装配和释放。
  15.流产性感染(abortive infection) 是Productive infection(产毒感染)的反义词,是指在一定条件下,病毒感染导致毒粒的无效复制,常不生产感染性毒粒。
  16.潜伏感染(latent infection) 一种病毒的持续性感染状态,在此情况下,不产生病毒。一般来说,大部分转录和翻译过程被阻断。
  17.慢性感染(chronic infection) 一种病毒能在宿主或细胞培养上继续复制而不杀死宿主或整个细胞培养。
  18.包含体(inclusion body) 在显微镜下可以识别的病毒合成和积贮的部位,常是细胞内的病毒晶体。
  19.交叉保护作用(cross protection) 两种病毒感染一种寄主时先入侵的病毒能够保护寄主不再受第二种病毒的侵染。
  20.干扰作用(interference) 一种病毒引起另一种病毒感染或复制的抑制作用。
  21.缺损性干扰颗粒(defective inferring particle) 基因有缺陷的病毒突变株,通常无感染性,但能干扰亲代病毒的复制。
  22.协生作用(synergism) 两种病毒混合侵染后,表现不同于原来两种病毒的更为严重的症状。
  23.前病毒(provirus) 一种细胞内病毒DNA,它可以整合到宿主细胞基因组,或已整合在宿主细胞基因组中,可随细胞的传代而垂直传播。

7. 基因组名词解释

题库内容:基因的解释[gene] 存在于细胞的染色体上的生物体遗传的基本单位 详细解释 (1).起因;基本 原因 。 郁达夫 《杨梅烧酒》 :“而这一出实在 也是 滑稽 得很的小悲剧,现在却 终于 成了我们两个旧友的再见的基因。” 郭沫若 《羽书集·驳<实庵字说>》 :“我的其它的 不同 性质 的 著作 ,都以同样形式发表了的,也都基因于这样的理由。” (2).[英gene]存在于细胞内有自体繁殖 能力 的遗传的基本单位。 张洁 《爱,是不能 忘记 的》 :“莫非我那‘贼风入耳’的毛病是从她那里来的? 大约 我们的细胞中主管‘贼风入耳’这种遗传性状的是一个 特别 尽职 尽责 的基因。” 词语分解 基的解释  基 ī 建筑物的根脚:基石。 基础 。 奠基 。 根本的,起始的:基本。基业。基层。基点。基准。 根据:基于。 化学上化合物的分子中所含的一部分子原子被看作是一个单位时,称作“基”:基团。基态。氨基。羧基。 因的解释  因 ī 原故,原由,事物发生前已 具备 的条件:原因。因素。因果。病因。 理由:因为(唅 )。因而。 依,顺着,沿袭:因此。因之。 因循 (a.沿袭;b.迟延拖拉)。 因噎废食 。陈陈相因。 果 笔画数:; 部

基因组名词解释

8. 基因名词解释

题库内容:基因的解释[gene] 存在于细胞的染色体上的生物体遗传的基本单位 详细解释 (1).起因;基本 原因 。 郁达夫 《杨梅烧酒》 :“而这一出实在 也是 滑稽 得很的小悲剧,现在却 终于 成了我们两个旧友的再见的基因。” 郭沫若 《羽书集·驳<实庵字说>》 :“我的其它的 不同 性质 的 著作 ,都以同样形式发表了的,也都基因于这样的理由。” (2).[英gene]存在于细胞内有自体繁殖 能力 的遗传的基本单位。 张洁 《爱,是不能 忘记 的》 :“莫非我那‘贼风入耳’的毛病是从她那里来的? 大约 我们的细胞中主管‘贼风入耳’这种遗传性状的是一个 特别 尽职 尽责 的基因。” 词语分解 基的解释  基 ī 建筑物的根脚:基石。 基础 。 奠基 。 根本的,起始的:基本。基业。基层。基点。基准。 根据:基于。 化学上化合物的分子中所含的一部分子原子被看作是一个单位时,称作“基”:基团。基态。氨基。羧基。 因的解释  因 ī 原故,原由,事物发生前已 具备 的条件:原因。因素。因果。病因。 理由:因为(唅 )。因而。 依,顺着,沿袭:因此。因之。 因循 (a.沿袭;b.迟延拖拉)。 因噎废食 。陈陈相因。 果 笔画数:; 部