傅里叶变换的意义

2024-05-16 03:22

1. 傅里叶变换的意义

傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。
傅里叶级数和傅里叶变换其实就是我们之前讨论的特征值与特征向量的问题。分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。

扩展资料
傅里叶变换的应用:
1、傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;
2、傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;
3、正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;
4、著名的卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;
5、离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT))。
参考资料来源:百度百科-傅里叶变换

傅里叶变换的意义

2. 傅里叶变换的意义


3. 傅里叶变换的意义和理解是什么?

傅里叶变换的意义和理解:
一、意义:
从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
在数学领域,尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类。
正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。
二、理解:
傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。

傅里叶变换的相关说明:
1、图像经过二维傅里叶变换后,其变换系数矩阵表明:
若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅里叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅里叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。
2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。
以上内容参考:百度百科-傅里叶变换

傅里叶变换的意义和理解是什么?

4. 傅里叶变换的目的和意义

目的: 把声音、图像都分解为N多个三角函数的叠加。使用不同的基本函数去分解可以得到不同变换。傅里叶变换只是其中一种,还是有拉普拉斯变换、Z 变换等

意义:傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的。

傅里叶变换的应用:
1、傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;
2、傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;
3、正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;
4、著名的卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;
5、离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT))。

5. 傅里叶变换怎么理解

1、公式描述:公式中F(ω)为f(t)的像函数,f(t)为F(ω)的像原函数。 2、傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。 3、相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT))。

傅里叶变换怎么理解

6. 关于傅里叶变换的理解

傅里叶分析可分为傅里叶级数和傅里叶变换。傅里叶分析可以将任何周期函数看作是不同振幅,不同相位正弦波的叠加,一个矩形波在傅里叶变换后在频域中变为一条条幅值。
   例如收音机接收到的信号是多个电台的信号波叠加,如果直接播放我们不能听到任何声音。收音机通过傅里叶变换将信号波分解为特定频率的信号,从而听到某个电台的节目。
  
 傅里叶空间中的每个向量都可以表示为其一组基的无限线性组合,这就是傅里叶展开。这一组基互相正交,称为傅里叶基。
   傅里叶级数就是将傅里叶空间中的一个向量通过基的线性组合的方式写出来(一个基的线性组合),每一个基的系数可以通过内积计算得到。
   傅里叶级数的指数形式,通过欧拉公式将三角函数转换为指数函数,同时引入虚数i。 exp(ix)=cos(x)+isin(x) ,复平面的向量 (cos(x), isin(x)) 与 exp(ix) 等价(上述公式可用泰勒级数证明)。当 exp(ix) 中的 x 变成时间 t 时,随着时间的流逝,该向量就会在 2π 秒后旋转一圈,即 T=2π 。因此, exp(iwt) 是一个旋转的向量。傅里叶级数就从以三角函数作为基的线性组合就变为指数函数为基的线性组合。
  
 当周期函数的周期趋于无穷时,无穷级数转换为积分,此时实数轴上的每个点都对应一个基,该积分就是这无限个基的“线性组合”。
  
 正空间的晶格做傅里叶变换得到倒易空间(傅里叶空间),在正空间具有周期性的晶格在倒易空间变为倒格子(透射电镜下投影为二维点阵),而在正空间混乱的晶格在倒空间也将是混乱的。正空间表示时域,倒易空间表示频域。由于晶格的周期性,因此关于晶格的所有性质都可以经过傅里叶变换进行计算。

7. 傅里叶变换的实际意义是什么?

  傅里叶级数展开的实际意义:

  傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。
  傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。
  和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。
  从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。
  在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:
  1) 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;
  2) 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;
  3) 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;
  4) 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。
  参考链接:
  傅里叶级数展开的实际意义_百度文库
  http://wenku.baidu.com/link?url=Dtzm3lpZCOiu6iRxLeW2sK0_8joYJKvidLpkzoCflNm3vdMxuXLtHTIxGRyfk287AOl3T42Yi2eYBGpcrqKqMWmGkEqWCBwJcXlk9qvIxBC

傅里叶变换的实际意义是什么?

8. 傅里叶变换的意义 什么是傅里叶变换的意义

1、傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。 
 
 2、傅里叶级数和傅里叶变换其实就是我们之前讨论的特征值与特征向量的问题。分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。