名词解释超导材料

2024-05-16 23:30

1. 名词解释超导材料

超导材料,是指具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。
中文名
超导材料
外文名
superconducting material
特    性
处于超导态时电阻为零
材    料
28种元素和几千种合金和化合物
特性1
抗磁性
特性2
同位素效应

名词解释超导材料

2. 超导反应名词解释生理学

超导的反应是称为超导现象。某些物质在很低的温度时,电阻就变为零,这种现象称为超导现象。超导现象的优点:在电厂发电、输送电能等方面若应用超导材料,可以大大降低电能的损耗;用超导材料制造电子元件不必考虑散热问题,可以大大缩小元件尺寸,实现电子设备的微型化。【摘要】
超导反应名词解释生理学【提问】
超导的反应是称为超导现象。某些物质在很低的温度时,电阻就变为零,这种现象称为超导现象。超导现象的优点:在电厂发电、输送电能等方面若应用超导材料,可以大大降低电能的损耗;用超导材料制造电子元件不必考虑散热问题,可以大大缩小元件尺寸,实现电子设备的微型化。【回答】

3. 超导磁体名词解释

超导磁体的名词解释为一种电磁体,详细介绍如下:
1、简介:超导磁体是指低温下用具有高转变温度和临界磁场特别高的第二类超导体制成线圈的一种电磁体。它的主要特点是无导线电阻产生的电损耗,也没有因铁芯存在而产生的磁损耗,具有很强的实用价值。在工业和科研上应用极广,但它必须在液态氦温度下工作,成本较高。

2、发展历程:自从1911年发现超导电性以来,研究人员就一直设法用超导材料来绕制超导线圈,即超导磁体。但初期令人失望的是,只通过很小的电流,超导磁体就失超了,即超导线圈从电阻为零的超导态转变到了电阻相当高的正常态。直到1961年孔兹勒等人利用超导材料,绕成了能产生接近磁场的超导线圈,揭开了超导磁体实际应用的序幕。

3、特点:超导磁体稳定运行时本身没有焦耳热的损耗,对于需要在较大空间中获得直流强磁场的磁体,这一点尤为突出,可以大量节约能源,且所需的励磁功率很小,也不需要常规磁体那样庞大的供水和净化设备。在核物理和高能物理研究中,已采用了大型的超导磁体作为核心部件。高温超导磁体在这方面的意义更加明显。

超导磁体名词解释

4. 超导的概念 名词解释 超导

首先,说明超导只是一个定语,所以,只能以超导性来解释超导一词。
以下为超导性的官方名词解释:温度和磁场都小于一定数值的条件下,导电材料的电阻和体内磁感应强度都突然变为零的性质。具有超导性的物体称“超导体”。1911年荷兰物理学家卡末林一昂内斯首先发现汞在液氦温度(4.2开)下失去电阻的现象,并称之为“超导性”。物体从正常态过渡到超导态时的温度称为此超导体的“转变温度”(或“临界温度”)。1933年德国物理学家迈斯纳(Fritz Walther Meissner,1882—1974)和奥森费耳德(RobertOchsenfeld,190l—1993)又共同发现金属处在超导态时体内磁感应强度为零,即能把原来在其体内的磁场排挤出去,这个现象称“迈斯纳效应”。当磁场达到一定强度时,超导性就将破坏,这个磁场限值称“临界磁场”。超导体在电工学和电子学方面都有很大的应用价值,但由于需要液氦条件,因此使用受到限制。1986年底以后,发现了氧化物超导体,临界温度约可达90~130开,实现了能在液氮(77开)温度稳定工作的超导材料,引起全世界的关注,此类材料称“高温超导”。现正继续寻找可在室温附近工作的超导体。

5. 超导的基本介绍

人们把处于超导状态的导体称之为“超导体”。超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中形成强大的电流,从而产生超强磁场。超导是指某些物质在一定温度条件下(一般为较低温度)电阻降为零的性质。1911年荷兰物理学家H·卡茂林·昂内斯发现汞在温度降至4.2K附近时突然进入一种新状态,其电阻小到实际上测不出来,他把汞的这一新状态称为超导态。以后又发现许多其他金属也具有超导电性。低于某一温度出现超导电性的物质称为超导体。1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质——当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。后来人们还做过这样一个实验:在一个浅平的锡盘中,放入一个体积很小但磁性很强的永久磁体,然后把温度降低,使锡盘出现超导性,这时可以看到,小磁铁竟然离开锡盘表面,慢慢地飘起,悬浮不动。迈斯纳效应有着重要的意义,它可以用来判别物质是否具有超导性。为了使超导材料有实用性,人们开始了探索高温超导的历程,从1911年至1986年,超导温度由水银的4.2K提高到23.22K(0K=-273.15℃;K开尔文温标,起点为绝对零度)。1986年1月发现钡镧铜氧化物超导温度是30K,12月30日,又将这一纪录刷新为40.2K,1987年1月升至43K,不久美国华裔科学家朱经武与台湾物理学家吴茂昆以及大陆科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的“温度壁垒”(77K)也被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986年-1987年的短短一年多的时间里,临界超导温度提高了近100K。大约1993年,铊-汞-铜-钡-钙-氧系材料又把临界超导温度的记录提高到138K 。高温超导体取得了巨大突破,使超导技术走向大规模应用。超导材料和超导技术有着广阔的应用前景。超导现象中的迈斯纳效应使人们可以用此原理制造超导列车和超导船,由于这些交通工具将在悬浮无摩擦状态下运行,这将大大提高它们的速度和安静性,并有效减少机械磨损。利用超导悬浮可制造无磨损轴承,将轴承转速提高到每分钟10万转以上。超导列车已于70年代成功地进行了载人可行性试验,1987年开始,日本开始试运行,但经常出现失效现象,出现这种现象可能是由于高速行驶产生的颠簸造成的。超导船已于1992年1月27日下水试航,目前尚未进入实用化阶段。利用超导材料制造交通工具在技术上还存在一定的障碍,但它势必会引发交通工具革命的一次浪潮。超导材料的零电阻特性可以用来输电和制造大型磁体。超高压输电会有很大的损耗,而利用超导体则可最大限度地降低损耗,但由于临界温度较高的超导体还未进入实用阶段,从而限制了超导输电的采用。随着技术的发展,新超导材料的不断涌现,超导输电的希望能在不久的将来得以实现。现有的高温超导体还处于必须用液态氮来冷却的状态,但它仍旧被认为是20世纪最伟大的发现之一。

超导的基本介绍

6. 什么是超导现象及超导体?? (知情人回答谢谢……)

超导是指导电材料在温度接近绝对零度的时候,物体分子热运动下材料的电阻趋近于0的性质;“超导体”是指能进行超导传输的导电材料。零电阻和抗磁性是超导体的两个重要特性。
超导现象是指金属在一定温度下失去电阻的现象 也就是零电阻

7. 超导效应的介绍

超导效应是由荷兰莱顿大学的卡茂林-昂尼斯意外地发现,她将汞降温发现汞的电阻没有了,并且发现了很多合金也通过降温没有了电阻,出现了它的特殊导电性能,被人们称为超导效应。

超导效应的介绍

8. 超导物理学的概述

昂内斯于1853年9月21日生于荷兰的格罗宁根,29岁即1882年就被任命为荷兰莱顿大学物理学教授和实验室主任.晋升后不久,昂内斯受到他的同胞范德瓦尔斯研究的影响,决定在莱顿大学建一个当时在世界上规模最大的低温实验室,并把全部研究项目都转到低温研究方面.由于有了较好的实验条件,昂内斯于1906年使 用真空泵连续真空法,使低温气体获得最大限度的膨胀,这样,他获得了20.4k(零下252.76℃)的低温,液化了氢气.由于有了大量液态氢,就为进一步液化氦气打下了坚实的基础.1908年7月10日,液化氦气的关键性实验从凌晨5点半就开始了,经过漫长的13小时之后,实验室的工作人员才在人类科学史上第一次看到了液态的氦.当时,昂内斯激动得不得了,他激动地说:当我看到了液氦时,那真有点像神话中的幻觉,一切都似乎是奇迹的显现.在实验过程中昂内斯获得了4.2k(零下268.96℃) 的低温.过了两年,昂内斯进一步做了使氦固化的试验,但是没有成功.虽说氦没有固化成功,昂内斯意外地从中却获得了1.04k(零下272.12℃)的低温.这是人类向绝对零度大大逼近了一步.人们为了尊敬昂内斯的贡献,给他送了一个风趣的绰号叫绝对零度先生.从此,昂内斯更加专心致志于探索物体在低温时表现出的特殊性质.昂内斯和他的学生开始用汞作为测量对象,因为他认为金属材料纯净与否会大大影响测量.而汞可以用蒸馏法提炼得非常纯净.1911年4月的一天,昂内斯让他的学生霍尔斯特进行实验观察,在观察中发现当温度到4.2k以下时,电阻突然消失了,这使霍尔斯特大为惊讶.但是,昂内斯并不感到过分吃惊,因为这一实验结果与他的猜想相吻合.4月28日,昂内斯公布了他们的这一重要发现.同年11月25日,他又明确指出,测量表明,从氢的熔点(14.02k)到氦的沸点(4.56k)之间,曲线显示出汞的电阻随温度下降而减小的速度与通常情形一样,是逐渐减小的;但到4.21k与4.19k之间,电阻减小的速度急剧加快;到4.19k时,电阻完全都消失了.就这样,低温超导现象被人类第一次发现了.为了进一步证明电阻真的减到零,昂内斯和他的学生把磁铁穿过水银环路,由于电磁感应产生的电流保持了好几天,这就充分证实了电阻完全消失后的超导现象:即只要超导体内有电流,由于没有电阻,所以原则上电流就会永远流动下去,不会停止.1913年,昂内斯首次在论文中使用了超导电性这个词.美国物理学家巴丁,库珀,施里弗说明了超导现象的微观本质和机制,创立了BCS超导微观理论超导现象虽说于1911年就发现了,但是直到20世纪40年代末,还只能建立起一个唯象的理论,仅仅只限于解释超导的宏观现象.一直到1957年,关于超导现象的 微观本质和它的机制,才由美国物理学家巴丁,库珀和施里弗三人共同解决----他们合作创建了超导微观理论.他们三人创建的这套理论,取每人姓氏的第一个字母进行组合,即被称为BCS理论.这一理论提出后,迅即被大量理论研究和实验实践证明它是十分成功的----因为,这一理论能对超导电性作出正确的解释,并极大的促进了电性和超导磁体的研究和应用.所以如此,他们三人于1972年共同获得了诺贝尔物理学奖.缪勒和柏德诺兹的研究成果导致多种液氮温区高温超导体材料的出现,并宣告了超导技术开发应用时代即将到来20世纪70年代中期以后,人们对于超导现象的研究沉寂了一段时间.这是因为在实验室里,人们对超导材料的选择上仅限纯金属,金属合金和金属化合物,这些材料的临界温度约在23.2k以下,无法提高因此在应用上受到了阻碍.到1986年1月26日,美国国际商用机器公司苏黎世实验室的瑞士物理学家缪勒和西德物理学家柏德诺兹发现钡镧铜氧化合物的临界温度提高到了30k左右,并证明有可能提高到35k.这次成功缘于一次国际会议的召开.在1983年7月的一次国际会议上,缪勒遇到了他的老朋友托马斯教授.在会上,托马斯教授提出了一个新的设想----他认为,绝缘体的电子通常都紧密地与原子核紧紧连在一起,因而不容易导电;但如果给某些绝缘体掺入一些杂质,以松散与核紧密相联的电子,这样的话,电子就比较自由,这些绝缘体就有可能成为超导体.缪勒当时正在进行这方面的研究,托马斯的观点与他的想法正是不谋而合.听了托马斯的分析,缪勒的信心和劲头更足了.他对金属氧化物已经有充分的了解,最后,他选用了陶瓷材料.在以后的两年半中,他与他的助手柏德诺兹在实验室中苦干,终于取得了前面提到的突破性发现.他们俩人的发现,意义不仅仅在于使超导的温度有了较大幅度的提高,更重要的是他们选用的陶瓷材料----突破了传统中材料的选择.正是由于这一选择和突破,在全世界掀起了一股前所未有的超导热,在短短的几个月时间里,美国,中国,日本和前苏联竞相宣布,它们的科学家们用陶瓷材料,将超导的临界温度大幅度地提高了.1957年,挪威裔美国物理学家贾埃弗完成了量子力学隧道效应实验,并于1960年完成了超导体隧道效应实验.于1973年获诺贝尔物理学奖.1962年,英国物理学家约瑟夫森预言,在超导体--绝缘体--超导体这样一个结构中(物理学上通称为一个结),将会出现无电阻电流,这一预言在1963年被实验证实,并命名为约瑟夫森效应.又过了一年,一位叫默塞罗的物理学家发现,如果利用两个约瑟夫森结,则可利用两个电流的相互干涉作用,使无阻电流值更大这种干涉效应与光学中利用双缝增强光度的效应是差不多的.超导量子干涉仪就是根据这一原理制造出来的.超导量子干涉仪的用途极为广泛,如果用来作精密测量,其精密度达到惊人的程度.约瑟夫森和贾埃弗的发现,对于研制高性能的半导体和超导体元器件具有很高的应用价值,并导致超导电子学的建立.超导研究已长达近一个世纪,20年前超导应用在科学界还被认为是一种侈谈.而今天,它已在科研,医疗,交通,通信,军事,电力和能源等领域得到了应用.但这只是序幕,超导研究与应用在21世纪将为我们展现更加绚丽辉煌的前景.

最新文章
热门文章
推荐阅读