太阳黑子周期多少,它的出现对地球会产生什么影响

2024-05-10 04:23

1. 太阳黑子周期多少,它的出现对地球会产生什么影响

黑子的活动周期约为11年,
对地球的磁场产生影响,主要是使地球南北极和赤道的大气环流作经向流动,从而造成恶劣天气,使气候转冷。严重时会对各类电子产品和电器造成损害。

太阳黑子周期多少,它的出现对地球会产生什么影响

2. 当太阳黑子爆发时,还会出现那些太阳活动,对地球产生怎样的影响

当黑子爆发时,说明太阳活动比较频繁,其他的太阳活动包括耀斑和日珥都会比平常多,对地球的影响必修一太阳活动对地球的影响讲的很明白:1黑子影响地球异常气候现象;2耀斑增加扰乱地球电离层,使无线电通信收到干扰甚至中断;3 太阳活动增强,太阳风影响地球磁场,产生磁暴现象。
   当纽约时间9月30日21:00,北京时间:
纽约位于西五区,北京位于东八区,向东时间相差13小时,21加13等于34即第二天10点,则北京时间为10月1日的10点,

3. 太阳黑子的活动和地球有什么相关性?

太阳黑子的活动可能会给地球带来流感病毒的“进化”。我们都知道,如今我们人类之所以能在地球高枕无忧,第一个应该感谢的“恩人”,就是太阳系的大家长太阳。这位“巨无霸”级别的恒星,在太阳系的正中央数十亿年如一日的发光发热,为我们人类提供着生存所需的必要能源,令我们可以繁衍生息。熟悉物理学的朋友可能会知道,这位“大家长”在兢兢业业的背后,还有着“狂暴”的一面。

太阳实际上,并不是很多人心目中的“永动机”,它的内部也有着充足的能源,供他正常的运转,工作。而他的“工作”,也不能一直保持稳定,偶尔的时候,也会产生一些“意外情况”。在太阳活动的高峰期,有时候就会出现“太阳黑子”的现象。我们在地球通过天文望远镜来观察的话,太阳黑子有些类似人脸上的“雀斑”,但是它的恐怖威力,足以让所有人谈之变色。太阳黑子爆发时,首先会向外辐射能量,从而干扰地球的电离层,和覆盖地表的磁场系统。

太阳黑子释放出来的巨大能量,有一些可能会穿越茫茫的宇宙,袭击我们地球的大气层;这个时候,大气层中的电离子,就会充当“保护伞”的作用,与之展开对撞。因此,就会产生著名的“地磁暴”现象。据目前的模型推演,双方的力量会在各种因素的干扰下达到一个平衡,因此“地磁暴”并不会对人类产生直接的威胁。

但是,太阳黑子能量和电离子之间的冲击,有可能引来生物体演变过程中变异,干扰流感病毒当中的遗传因子,从而酿就人类始料未及的流感爆发。这点,还是值得我们所有人警惕。

太阳黑子的活动和地球有什么相关性?

4. 太阳黑子的活动对地球有什么影响

1.当太阳上有大群黑子出现的时候,地球上的指南针会乱抖动,不能正确地指示方向;平时很善于识别方向的信鸽会迷路;无线电通讯也会受到严重阻碍,甚至会突然中断一段时间,这些反常现象将会对飞机、轮船和人造卫星的安全航行、还有电视传真等等方面造成很大的威胁.2.黑子还会引起地球上气候的变化.100多年以前,一位瑞士的天文学家就发现,黑子多的时候地球上气候干燥,农业丰收;黑子少的时候气候潮湿,暴雨成灾.我国的著名科学家竺可桢也研究出来,凡是中国古代书上对黑子记载得多的世纪,也是中国范围内特别寒冷的冬天出现得多的世纪.还有人统计了一些地区降雨量的变化情况,发现这种变化也是每过11年重复一遍,很可能也跟黑子数目的增减有关系.
3.研究地震的科学工作者发现,太阳黑子数目增多的时候,地球上的地震也多.地震次数的多少,也有大约11年左右的周期性.
4.植物学家也发现,树木的生长情况也随太阳活动的11年周期而变化.黑子多的年份树木生长得快;黑子少的年份就生长得慢.黑子数目的变化甚至还会影响到我们的身体,人体血液中白血球数目的变化也有11年的周期性.

5. 太阳黑子活动达到峰值时候,地球表面会有什么影响??

下一个太阳黑子活动周期的高峰将出现在2011年末或2012年中,航班、通信卫星和电力输送都有可能受到影响。但预测者对其活动强度看法不一。
  负责预测太阳活动周期的一个12人小组今天表示,关于这次高峰会出现90个黑子还是140个黑子,持两种观点的人各占一半。
  科罗拉多州博尔德空间环境中心负责跟踪观察太空的天气并预测其变化,这种变化会影响到价值不菲的活动如石油钻探、汽车导航和航空航天等。
  小组中的一半专家预言,下一个周期的太阳黑子活动会比较强,将有140个黑子于2011年10月达到活动高峰。而另一半专家预言太阳黑子的活动较弱,认为会有90个黑子于2012年8月达到活动高峰。
  博尔德科罗拉多大学大气和宇宙物理实验室主任丹尼尔·贝克指出,随着太阳活动周期的起伏,太阳辐射的变化可能会影响到太空里总价值2000亿美元以上的卫星。贝克称,其它问题还有:飞越极点的航班会失去联络信号、全球定位系统(GPS)可能会受到太阳活动的干扰等。

太阳黑子活动达到峰值时候,地球表面会有什么影响??

6. 太阳黑子活动对地球有何影响啊?

百度上搜的
太阳黑子的影响
磁爆 
全球性的强烈地磁场扰动即磁暴。所谓强烈是相对各种地磁扰动而言。其实地面地磁场变化量较其平静值是很微小的。在中低纬度地区,地面地磁场变化量很少有超过几百纳特的(地面地磁场的宁静值在全球绝大多数地区都超过 3万纳特)。一般的磁暴都需要在地磁台用专门仪器做系统观测才能发现。 
磁暴是常见现象。不发生磁暴的月份是很少的,当太阳活动增强时,可能一个月发生数次。有时一次磁暴发生27天(一个太阳自转周期)后,又有磁暴发生。这类磁暴称为重现性磁暴。重现次数一般为一、二次。 
研究简史 19世纪 30年代 C.F.高斯和韦伯建立地磁台站之初,就发现了地磁场经常有微小的起伏变化。1847年,地磁台开始有连续的照相记录。1859年9月1日,英国人卡林顿在观察太阳黑子时,用肉眼首先发现了太阳耀斑。第二天,地磁台记录到 700纳特的强磁暴。这个偶然的发现和巧合,使人们认识到磁暴与太阳耀斑有关。还发现磁暴时极光十分活跃。19世纪后半期磁暴研究主要是积累观测资料。 
20世纪初,挪威的K.伯克兰从第一次国际极年(1882~1883)的极区观测资料,分析出引起极光带磁场扰动的电流主要是在地球上空,而不在地球内部。为解释这个外空电流的起源,以及它和极光、太阳耀斑的关系,伯克兰和F.C.M.史笃默相继提出了太阳微粒流假说。到30年代,磁暴研究成果集中体现在查普曼-费拉罗磁暴理论中,他们提出地磁场被太阳粒子流压缩的假说,被后来观测所证实。 
50年代之后,实地空间探测不但验证了磁暴起源于太阳粒子流的假说,并且发现了磁层,认识了磁暴期间磁层各部分的变化。对磁层环电流粒子的存在及其行为的探测,把磁暴概念扩展成了磁层暴。 
磁暴和磁层暴是同一现象的不同名称,强调了不同侧面。尽管磁暴的活动中心是在磁层中,但通常按传统概念对磁暴形态的描述仍以地面地磁场的变化为代表。这是因为,人们了解得最透彻的仍是地面地磁场的表现。 
形态 在磁暴期间,地磁场的磁偏角和垂直分量都有明显起伏,但最具特征的是水平分量H。磁暴进程多以水平分量的变化为代表。大多数磁暴开始时,在全球大多数地磁台的磁照图上呈现出水平分量的一个陡然上升。在中低纬度台站,其上升幅度约10~20纳特。这称为磁暴急始,记为SSC或SC。急始是识别磁暴发生的明显标志。有急始的磁暴称为急始型磁暴。高纬台站急始发生的时刻较低纬台站超前,时间差不超过1分钟。 
磁暴开始急,发展快,恢复慢,一般都持续两三天才逐渐恢复平静。磁暴发生之后,磁照图呈现明显的起伏,这也是识别磁暴的标志。同一磁暴在不同经纬度的磁照图上表现得很不一样。为了看出磁暴进程,通常都需要用分布在全球不同经度的若干个中、低纬度台站的磁照图进行平均。经过平均之后的磁暴的进程称为磁暴时(以急始起算的时刻)变化,记为Dst。 
磁暴时变化大体可分为 3个阶段。紧接磁暴急始之后,数小时之内,水平分量较其平静值大,但增大的幅度不大,一般为数十纳特,磁照图相对稳定。这段期间称为磁暴初相。然后,水平分量很快下降到极小值,下降时间约半天,其间,磁照图起伏剧烈,这是磁暴表现最活跃的时期,称为磁暴主相。通常所谓磁暴幅度或磁暴强度,即指这个极小值与平静值之差的绝对值,也称Dst幅度。水平分量下降到极小值之后开始回升,两三天后恢复平静,这段期间称为磁暴恢复相。磁暴的总的效果是使地面地磁场减小。这一效应一直持续到恢复相之后的两三天,称为磁暴后效。通常,一次磁暴的幅度随纬度增加而减小,表明主相的源距赤道较近。 
同一磁暴,各台站的磁照图的水平分量H与平均形态Dst的差值,随台站所在地方时不同而表现出系统的分布规律。这种变化成分称为地方时变化,记为DS。DS反映出磁暴现象的全球非轴对称的空间特性,而不是磁暴的过程描述。它表明磁暴的源在全球范围是非轴对称分布的。 
磁照图反映所有各类扰动的叠加,又是判断和研究磁暴的依据,因此实际工作中往往把所有这些局部扰动都作为一种成分,包括到磁暴中。但在建立磁暴概念时,应注意概念的独立性和排他性。磁暴应该指把局部干扰排除之后的全球性扰动。 
成因 太阳耀斑的喷出物常在其前缘形成激波,以1000公里/秒的速度,约经一天,传到地球。太阳风高速流也在其前缘形成激波,激波中太阳风压力骤增。当激波扫过地球时,磁层就被突然压缩,造成磁层顶地球一侧的磁场增强。这种变化通过磁流体波传到地面,表现为地面磁场增强,就是磁暴急始。急始之后,磁层被压缩,压缩剧烈时,磁层顶可以进入同步轨道之内。与此同时磁层内的对流电场增强,使等离子体层收缩,收缩剧烈时,等离子体层顶可以近至距地面2~3个地球半径。如果激波之后的太阳风参数比较均匀,则急始之后的磁层保持一段相对稳定的被压缩状态,这对应磁暴初相。 
磁暴期间,磁层中最具特征的现象是磁层环电流粒子增多。磁层内,磁赤道面上下4个地球半径之内,距离地心2~10个地球半径的区域内,分布有能量为几十至几十万电子伏的质子。这些质子称为环电流粒子,在地磁场中西向漂移运动形成西向环电流,或称磁层环电流,强度约106安。磁层环电流在磁层平静时也是存在的。而磁暴主相时,从磁尾等离子体片有大量低能质子注入环电流区,使环电流幅度大增。增强了的环电流在地面的磁效应就是H分量的下降。每注入一次质子,就造成H下降一次,称为一次亚暴,磁暴主相是一连串亚暴连续发生的结果。磁暴主相的幅度与环电流粒子的总能量成正比。磁暴幅度为100纳特时,环电流粒子能量可达4×1015焦耳。这大约就是一次典型的磁暴中,磁层从太阳风所获得并耗散的总能量。而半径为 3个地球半径的球面之外的地球基本磁场的总能量也只有3×1016焦耳。可见,磁暴期间磁层扰动之剧烈。 
磁层亚暴时注入的粒子向西漂移,并绕地球运动,在主相期间来不及漂移成闭合的电流环,因此这时的环电流总是非轴对称的,在黄昏一侧强些。 
除主相环电流外,在主相期间发生的亚暴还对应有伯克兰电流体系。伯克兰电流体系显然是非轴对称的。它在中低纬度也会产生磁效应,只不过由于距离较远,效应较之极光带弱得多。它和主相环电流的非轴对称部分的地磁效应合在一起就是DS场。 
由于磁层波对粒子的散射作用,以及粒子的电荷交换反应,环电流粒子会不断消失。当亚暴活动停息后,不再有粒子供给环电流,环电流强度开始减弱,进入磁暴恢复相。 
所有这些空间电流,在地面产生磁场的同时,还会在导电的地壳和地幔中产生感应电流,但是感应电流引起的地磁场变化,其大小只有空间电流引起的地磁场变化的一半。 
研究意义 磁暴观测早已成为各地磁台站的一项常规业务。在所有空间物理观测项目中,地面磁场观测最简单可行,也易于连续和持久进行,观测点可以同时覆盖全球陆地表面。因此磁暴的地面观测是了解磁层的最基本、最有效的手段。在研究日地空间的其他现象时,往往都要参考代表磁暴活动情况的磁情指数,用以进行数据分类和相关性研究。 
磁暴引起电离层暴,从而干扰短波无线电通讯;磁暴有可能干扰电工、磁工设备的运行;磁暴还有可能干扰各种磁测量工作。因此某些工业和实用部门也希望得到磁暴的预报和观测资料。 
磁暴研究除了上述服务性目的之外,还有它本身的学科意义。磁暴和其他空间现象的关系,特别是磁暴与太阳风状态的关系,磁暴与磁层亚暴的关系,以及磁暴的诱发条件,供应磁暴的能量如何从太阳风进入磁层等等问题,至今仍是磁层物理最活跃的课题。磁暴作为一种环境因素,与生态的关系问题也开始引起人们的注意和兴趣。

7. 太阳黑子的活动周期是多少年

太阳自身的周期对生命也有影响作用。太阳黑子的活动周期为11年,当太阳向宇宙空间喷射出巨大能源的时候,可以观察到其表面那些黑色团状雀斑。20世纪30年代,苏联历史学家A·L特契叶弗斯基宣称,他发现了太阳节律与地球上的战争和流行病暴发之间的内在联系。日本教授马基·塔卡塔指出,人体血液与太阳之间存在着某种联系。他发挥了妇科医生用以检测月经周期的方法,包括对两性血清蛋白的对比试验。1938年1月,世界上许多应用“塔卡塔反应”法的医院发表的报导表明,男、女性的测试结果总是处于变化之中。塔卡塔氏通过20余年的多方求证和分析,发现这些变化最突出地表现在太阳黑子群穿越太阳中心的时候,也就是太阳向地球倾注密集射线流的时候。各医院这类报导的突然增多也与太阳黑子活动在经历数年的平静后突然暴发相一致。
塔卡塔还注意到,他的测试结果总是在每天太阳升起之前的数分钟内发生突变,似乎血液本身已经“预见”到黑暗即将过去了。塔卡塔声称:“人是一台活性日晷仪。”他也论及了动物和植物的问题,并认为一切生命现象似乎都与太阳节律保持一致。

太阳黑子的活动周期是多少年

8. 太阳黑子活动会对地球造成多大影响

太阳黑子的影响
磁爆 
全球性的强烈地磁场扰动即磁暴。所谓强烈是相对各种地磁扰动而言。其实地面地磁场变化量较其平静值是很微小的。在中低纬度地区,地面地磁场变化量很少有超过几百纳特的(地面地磁场的宁静值在全球绝大多数地区都超过 3万纳特)。一般的磁暴都需要在地磁台用专门仪器做系统观测才能发现。 
磁暴是常见现象。不发生磁暴的月份是很少的,当太阳活动增强时,可能一个月发生数次。有时一次磁暴发生27天(一个太阳自转周期)后,又有磁暴发生。这类磁暴称为重现性磁暴。重现次数一般为一、二次。 
研究简史 19世纪 30年代 C.F.高斯和韦伯建立地磁台站之初,就发现了地磁场经常有微小的起伏变化。1847年,地磁台开始有连续的照相记录。1859年9月1日,英国人卡林顿在观察太阳黑子时,用肉眼首先发现了太阳耀斑。第二天,地磁台记录到 700纳特的强磁暴。这个偶然的发现和巧合,使人们认识到磁暴与太阳耀斑有关。还发现磁暴时极光十分活跃。19世纪后半期磁暴研究主要是积累观测资料。 
20世纪初,挪威的K.伯克兰从第一次国际极年(1882~1883)的极区观测资料,分析出引起极光带磁场扰动的电流主要是在地球上空,而不在地球内部。为解释这个外空电流的起源,以及它和极光、太阳耀斑的关系,伯克兰和F.C.M.史笃默相继提出了太阳微粒流假说。到30年代,磁暴研究成果集中体现在查普曼-费拉罗磁暴理论中,他们提出地磁场被太阳粒子流压缩的假说,被后来观测所证实。 
50年代之后,实地空间探测不但验证了磁暴起源于太阳粒子流的假说,并且发现了磁层,认识了磁暴期间磁层各部分的变化。对磁层环电流粒子的存在及其行为的探测,把磁暴概念扩展成了磁层暴。 
磁暴和磁层暴是同一现象的不同名称,强调了不同侧面。尽管磁暴的活动中心是在磁层中,但通常按传统概念对磁暴形态的描述仍以地面地磁场的变化为代表。这是因为,人们了解得最透彻的仍是地面地磁场的表现。 
形态 在磁暴期间,地磁场的磁偏角和垂直分量都有明显起伏,但最具特征的是水平分量H。磁暴进程多以水平分量的变化为代表。大多数磁暴开始时,在全球大多数地磁台的磁照图上呈现出水平分量的一个陡然上升。在中低纬度台站,其上升幅度约10~20纳特。这称为磁暴急始,记为SSC或SC。急始是识别磁暴发生的明显标志。有急始的磁暴称为急始型磁暴。高纬台站急始发生的时刻较低纬台站超前,时间差不超过1分钟。 
磁暴开始急,发展快,恢复慢,一般都持续两三天才逐渐恢复平静。磁暴发生之后,磁照图呈现明显的起伏,这也是识别磁暴的标志。同一磁暴在不同经纬度的磁照图上表现得很不一样。为了看出磁暴进程,通常都需要用分布在全球不同经度的若干个中、低纬度台站的磁照图进行平均。经过平均之后的磁暴的进程称为磁暴时(以急始起算的时刻)变化,记为Dst。 
磁暴时变化大体可分为 3个阶段。紧接磁暴急始之后,数小时之内,水平分量较其平静值大,但增大的幅度不大,一般为数十纳特,磁照图相对稳定。这段期间称为磁暴初相。然后,水平分量很快下降到极小值,下降时间约半天,其间,磁照图起伏剧烈,这是磁暴表现最活跃的时期,称为磁暴主相。通常所谓磁暴幅度或磁暴强度,即指这个极小值与平静值之差的绝对值,也称Dst幅度。水平分量下降到极小值之后开始回升,两三天后恢复平静,这段期间称为磁暴恢复相。磁暴的总的效果是使地面地磁场减小。这一效应一直持续到恢复相之后的两三天,称为磁暴后效。通常,一次磁暴的幅度随纬度增加而减小,表明主相的源距赤道较近。 
同一磁暴,各台站的磁照图的水平分量H与平均形态Dst的差值,随台站所在地方时不同而表现出系统的分布规律。这种变化成分称为地方时变化,记为DS。DS反映出磁暴现象的全球非轴对称的空间特性,而不是磁暴的过程描述。它表明磁暴的源在全球范围是非轴对称分布的。 
磁照图反映所有各类扰动的叠加,又是判断和研究磁暴的依据,因此实际工作中往往把所有这些局部扰动都作为一种成分,包括到磁暴中。但在建立磁暴概念时,应注意概念的独立性和排他性。磁暴应该指把局部干扰排除之后的全球性扰动。 
成因 太阳耀斑的喷出物常在其前缘形成激波,以1000公里/秒的速度,约经一天,传到地球。太阳风高速流也在其前缘形成激波,激波中太阳风压力骤增。当激波扫过地球时,磁层就被突然压缩,造成磁层顶地球一侧的磁场增强。这种变化通过磁流体波传到地面,表现为地面磁场增强,就是磁暴急始。急始之后,磁层被压缩,压缩剧烈时,磁层顶可以进入同步轨道之内。与此同时磁层内的对流电场增强,使等离子体层收缩,收缩剧烈时,等离子体层顶可以近至距地面2~3个地球半径。如果激波之后的太阳风参数比较均匀,则急始之后的磁层保持一段相对稳定的被压缩状态,这对应磁暴初相。 
磁暴期间,磁层中最具特征的现象是磁层环电流粒子增多。磁层内,磁赤道面上下4个地球半径之内,距离地心2~10个地球半径的区域内,分布有能量为几十至几十万电子伏的质子。这些质子称为环电流粒子,在地磁场中西向漂移运动形成西向环电流,或称磁层环电流,强度约106安。磁层环电流在磁层平静时也是存在的。而磁暴主相时,从磁尾等离子体片有大量低能质子注入环电流区,使环电流幅度大增。增强了的环电流在地面的磁效应就是H分量的下降。每注入一次质子,就造成H下降一次,称为一次亚暴,磁暴主相是一连串亚暴连续发生的结果。磁暴主相的幅度与环电流粒子的总能量成正比。磁暴幅度为100纳特时,环电流粒子能量可达4×1015焦耳。这大约就是一次典型的磁暴中,磁层从太阳风所获得并耗散的总能量。而半径为 3个地球半径的球面之外的地球基本磁场的总能量也只有3×1016焦耳。可见,磁暴期间磁层扰动之剧烈。 
磁层亚暴时注入的粒子向西漂移,并绕地球运动,在主相期间来不及漂移成闭合的电流环,因此这时的环电流总是非轴对称的,在黄昏一侧强些。 
除主相环电流外,在主相期间发生的亚暴还对应有伯克兰电流体系。伯克兰电流体系显然是非轴对称的。它在中低纬度也会产生磁效应,只不过由于距离较远,效应较之极光带弱得多。它和主相环电流的非轴对称部分的地磁效应合在一起就是DS场。 
由于磁层波对粒子的散射作用,以及粒子的电荷交换反应,环电流粒子会不断消失。当亚暴活动停息后,不再有粒子供给环电流,环电流强度开始减弱,进入磁暴恢复相。 
所有这些空间电流,在地面产生磁场的同时,还会在导电的地壳和地幔中产生感应电流,但是感应电流引起的地磁场变化,其大小只有空间电流引起的地磁场变化的一半。 
研究意义 磁暴观测早已成为各地磁台站的一项常规业务。在所有空间物理观测项目中,地面磁场观测最简单可行,也易于连续和持久进行,观测点可以同时覆盖全球陆地表面。因此磁暴的地面观测是了解磁层的最基本、最有效的手段。在研究日地空间的其他现象时,往往都要参考代表磁暴活动情况的磁情指数,用以进行数据分类和相关性研究。 
磁暴引起电离层暴,从而干扰短波无线电通讯;磁暴有可能干扰电工、磁工设备的运行;磁暴还有可能干扰各种磁测量工作。因此某些工业和实用部门也希望得到磁暴的预报和观测资料。 
磁暴研究除了上述服务性目的之外,还有它本身的学科意义。磁暴和其他空间现象的关系,特别是磁暴与太阳风状态的关系,磁暴与磁层亚暴的关系,以及磁暴的诱发条件,供应磁暴的能量如何从太阳风进入磁层等等问题,至今仍是磁层物理最活跃的课题。磁暴作为一种环境因素,与生态的关系问题也开始引起人们的注意和兴趣。