影响热像仪测温准确性的因素有哪些

2024-05-19 13:34

1. 影响热像仪测温准确性的因素有哪些

红外热像测温仪仪是被广大领域应用来探测、检测物体温度的设备,影响红外热像仪的因素有很多,比如温度、发射率、自身的影响以及周围环境的辐射。

发射率。发射率是需要经过测量电气设备表面的红外辐射来实现的,而物质表面发射率主要取决于材料性质和表面状况。即如果当红外诊断仪器接收到目标红外辐射功率相同时,就会取决于目标设备表面发射率的不同,出现检查结果是不一样的,这表明相同辐射功率,发射率比较低时它所显示的温度就会越高。
环境辐射。在用热成像仪检查户外设备的时候,仪器会接收到包括检测设备相应部位自身发射出来的设备,同时还会接收到设备其他背景的反射,这样会直接摄入太阳辐射,这些辐射都将对设备待测部位的温度造成干扰,会对故障检测带来一定的误差。而选择参数是以红外热成像和检测距离进行检测,使受检测的设备部位充满红外热成像视场,从而减少背景辐射的干扰,提高测温的准确性。
红外测温仪无需工作人员近距离检查通关人员,远距离测温既尊重了彼此隐私,也减少了近距离接触和人员聚集引起的交叉感染的风险;综合智能测温平台系统实现了无人化操作,增加安全,可实时储存也可及时智能报警,且可以满足事后查证的需要。

影响热像仪测温准确性的因素有哪些

2. 影响热像仪测温准确性的因素有哪些

红外热像仪测温受多种自然因素的影响,比如被测物体的发射率、形态、光洁度等以及红外热像仪自身的指标是否满足客户测量需求,比如光学分辨率是否满足,红外热像仪的波长选择等等
发射率
任何红外测量仪器都是通过测量电气设备表面红外辐射功率,来获得设备温度信息的。并且在红外诊断仪器接收来自目标红外辐射功率相同的情况下,因目标的表面发射率不同,将会得到不同的检测结果。也就是说,相同辐射功率,发射率越低,就会显示越高的温度。因物体表面发射率主要决定于材料性质和表面状态(如表面氧化情况,涂层材料,粗糙程度及污秽状态等)。因此为了应用红外热像仪器准确地测量电气设备温度,必须要知道受检目标的发射率值,并将该值作为计算温度的重要参数输入计算机或者调整红外热像仪的ε修正值,以便对所测量的温度输出值进行发射率修正。消除发射率对检测结果影响的另外两种对策措施是:当使用红外热像仪进行测量时,要对发射进行修正,查出被测设备部件表面的发射率值进行发射率修正,从而获得可靠的测温结果,提高检测的可靠性;对于红外检测的故障频发设备部件,为使检测结果具有良好的可比性,可以运用敷涂适当漆料的方法来增大和稳定其发射率值,以便获得被测设备表面的真实温度。
光学分辨率在实际应用中,有些人忽略红外热像仪的光学分辨率,不管被测目标直径的大小,打开测温仪对准目标就测,结果由于忽略该测温仪的光学分辨率 K 值要求导致测量误差很大。选用合适的光学分辨率和使用距离能够有效保障红外热像仪的测量和重复精度。
大气衰减
由于受检电气设备表面红外辐射能量,是经大气传输到红外检测仪器里的,这就会受到大气组合中的水蒸汽、二氧化碳、一氧化碳等气体分子的吸收衰减和空气中悬浮微粒的散射而衰减,设备辐射能量传输的衰减随着检测仪器到被测设备之间的距离,降低了被测设备辐射的透过率,所以其衰减是随距离的增大而增加,降低受检设备故障部位与正常部位的辐射对比度,也会因为红外仪器接收到的目标能量减少,使得仪器显示出来的温度低于被测故障点的

3. 测温枪或热像仪为什么测不准,影响因素有哪些?

可能原因:
(1)使用方法是否符合要求——近距离、同一环境温度、参数设定一致的要求;
(2)参数设定是否合适:参照正常人测量的额头温度值修正发射率ε(0.00-1.00端值范围),在测量一个正常体温人的时候,如果希望示数为36度附近,则比36度示数大则ε调节接近1.00端值,比36度小则ε调低,一般建议值(0.71-0.86)。
注意,在标准27摄氏度环境下测体表温度应该用人体发射率0.98,并且此时测额头温度为34-35摄氏度。发射率调节建议值(0.71-0.86)是为了补偿环境温度的影响。

测温枪或热像仪为什么测不准,影响因素有哪些?

4. 关于热像仪的问题 能给我提供信息吗?我现在做实验急用

  —测温范围
  根据被测物体的温度范围确定测温范围,来选择合适温度段的红外热像仪。并不是测温范围越大越好,测温范围只要满足用户要求即可。一般红外热像仪测量500℃以上的物体时,需要配备相应的高温镜头。,最高可测到2000℃,无需选配高温镜头,即可满足冶金行业对高温测量的要求。

  —像素
  民用红外热像仪中相对高端的产品像素为640x480 ,中端红外热像仪的像素为320x240,低端红外热像仪的像素为160x120。相同距离拍摄同一物体,红外热像仪像素越高,所获得的红外热图像越清晰。像素越高,红外热像仪的价格也越高

  —温度分辨率
  体现了一台红外热像仪对温度的敏感性,温度分辨率越小则意味着红外热像仪对温度的变化感知越明显。红外热像仪测试被测物的主要目的是通过温度差异找出温度故障点,测量单个点的温度值并没有太大意义,主要是通过温度差异来找相对的热点,起到预维护的作用。因此在选择红外热像仪的时候,根据实际情况,客户应选择满足自己检测的温度分辨率。

  —空间分辨率
  在使用红外热像仪观测时,红外热像仪对目标空间形状的分辨能力。红外热像仪的空间分辨率通常以mrad(毫弧度)为单位表示。mrad的值越小,表明其分辨率越高,测温越准确。空间分辨率乘以被测物到红外热像仪的距离(距离必须在红外热像仪的焦距范围以内)约等于弦长,也就是红外热像仪在该距离处所能测量的最小目标尺寸。在测试过程中,测试目标的尺寸应大于最小目标尺寸,否则测试目标就会受到其环境辐射的影响,所得到的温度是被测目标及其周围温度的平均温度,测试数值就不够准确。

  —响应时间
  表示红外热像仪对被测温度变化的反应速度。与光电探测器、信号处理电路及显示系统的时间常数有关。红外热像仪的反映速度比接触式测温法快得多。如果被测物的运动速度很快或测量快速加热的目标时,选用快速响应红外热像仪,否则达不到足够的信号响应,会降低测量精度。对于静止的或目标热过程存在热惯性时,红外热像仪的响应时间就可以放宽要求。因此,红外热像仪响应时间的选择应与用户的被测目标的实际情况相适应

  这些是选购热像仪方面的一些参数要求,热像仪分类有便携式跟在线式的,价格差距也很大,具体是实验室做什么用,有一些什么要求你可以打电话到   jayff.com     他们是美国FLIR  FLUKE 的总代理商。

5. 如何对热像仪进行测试

1)调整焦距

2)选择正确的测温范围

3)了解最大测量距离

4)仅仅要求生成清晰红外热图像,还是同时要求精确测温?

5)工作背景单一

6)保证测量过程中仪器平稳

1)调整焦距

您可以在红外图像存储后对图像曲线进行调整,但是您无法在图像存储后改变焦距,也无法消除其他杂乱的热反射。保证第
一时间操作正确性将避免现场的操作失误。仔细调整焦距!如果目标上方或周围背景的过热或过冷的反射影响到目标测量的精确性时,试着调整焦距或者测量方位,
以减少或者消除反射影响。(FoRD的意思是:Focus焦距,Range范围, Distance距离)

2)选择正确的测温范围

您是否了解现场被测目标的测温范围?为了得到正确的温度读数,请务必设置正确的测温范围。当观察目标时,对仪器的温度跨度进行微调将得到最佳的图像质量。这也将同时会影响到温度曲线的质量和测温精度。

3)了解最大的测量距离

当您测量目标温度时,请务必了解能够得到精确测温读数的最大测量距离。对于非制冷微热量型焦平面探测器,要想准确地
分辨目标,通过热像仪光学系统的目标图像必须占到9个像素,或者更多。 
如果仪器距离目标过远,目标将会很小,测温结果将无法正确反映目标物体的真实温度,因为红外热像仪此时测量的温度平均了目标物体以及周围环境的温度。为了
得到最精确的测量读数,请将目标物体尽量充满仪器的视场。显示足够的景物,才能够分辨出目标。与目标的距离不要小于热像仪光学系统的最小焦距,否则不能聚
焦成清晰的图像。

4)仅仅要求生成清晰红外热图像,还是同时要求精确测温

这之间有什么区别吗?一条量化的温度曲线可用来测量现场的温度情况,也可以用来编辑显著的温升情况。清晰的红外图像
同样十分重要。但是如果在工作过程中,需要进行温度测量,并要求对目标温度进行比较和趋势分析,便需要记录所有影响精确测温的目标和环境温度情况,例如发
射率,环境温度,风速及风向,湿度,热反射源等等。

5)工作背景单一

例如,天气寒冷的时候,在户外进行检测工作时,你将会发现大多数目标都是接近于环境温度的。当在户外工作时,请务必考虑太阳反射和吸收对图像和测温的影响。因此,有些老型号的红外热像仪只能在晚上进行测量工作,以避免太阳反射带来的影响。

6)保证测量过程中仪器平稳

在使用低帧频的红外热像仪拍摄图像过程中,由于仪器移动可能会引起图像模糊。为了达到最好的效果,在冻结和记录图像
的时候,应尽可能保证仪器平稳。当按下存储按钮时,应尽量保证轻缓和平滑。即使轻微的仪器晃动,也可能会导致图像不清晰。推荐在您胳膊下用支撑物来稳固,
或将仪器放置在物体表面,或使用三脚架,尽量保持稳定。
8仪器选购编辑
1、什么样的像素满足您的要求?

320*240=76,800?

在12米处测量的最小尺寸是1*1cm

160*120=19,200?

在12米处测量的最小尺寸是2*2cm

2、是否需要定量检测?

红外热像仪有两种用途:

1、热成像

2、测温

评价红外测温能力叫做MFOV,主要有2种:一种是MFOV 为1,另外一种MFOV为3*3。

MFOV为1时,目标完全覆盖了热像仪的像素,像素接受的辐射只来自目标,因此能准确测量目标温度。而MFOV为9时,像素接收的辐射不只来自目标,而且吸收目标旁边的和背后的辐射,就不能测得这么小目标的准确温度。

然而这只是测量的极限,根据当前的大部分FPA探测器技术,目标在探测器上最少要有 3 x 3 
个像素才能确保准确测量,这要求检测时尽量靠近目标或选用望远镜头. 
如果目标成像小于3x3个像素,则热像仪显示的温度读数是目标的温度值与也成像在这3x3个像素的目标周围物体(环境)温度的平均值。   
3、高空间分辨率的优势

高空间分辨率能够得出准确的温度,低空间分辨率读出的温度只是发热点周围的平均温度。在定量化检测时候,温度的正确与否非常重要!

4、稳定性重复性对你是否重要?

决定红外热像仪的因素主要有3个方面:

探测器、光学器件、电气原器件,军事级探测器的主要优势在哪里?

a、主要有两种探测器。氧化钒晶体和多晶硅。日本NEC热像仪采用了氧化钒晶体探测器,其自称的主要优势包括:

b、此探测器主要的优势是测温视域MFOV(Measurement Field of View)为1,温度测量是精确到1个像素点。 c、温度稳定性好。

d、使用寿命长

e、适合于远距离测试

5、是否在意报告处理的烦琐?

如果红外图像和可见光图像组合显示就减少了大量工作,同时报告自动生成也会大大减少操作时间。

6、是否需要延长曝光时间?延长曝光时间——专业照相的必然选择

∑2、∑4、∑8、 ∑16等功能,特别在检测北立面或者阳光照不到的地方很有优势。使用了∑功能,增加了曝光时间,图像更清晰,更容易发现缺陷部位。

如何对热像仪进行测试