从航母到理想L9,为什么都用上这种材料,碳化硅有何优势?

2024-05-13 22:51

1. 从航母到理想L9,为什么都用上这种材料,碳化硅有何优势?

从航母到理想L9都使用了碳化硅材料,是因为该材料有如下优势。
一、碳化硅是优秀的第三代半导体材料性能优良的碳化硅,代表着先进的生产力,第三代半导体材料是由碳化硅、氮化镓等构成的一种宽禁带半导体材料,它的击穿电场高、热导率高、电子饱和率高、抗辐射能力强。
因而可以在高温、高频率环境下工作,并可在低功耗条件下实现高功率工作。
二、推动新能源汽车变革早在2018年,特斯拉MODEL 3在主逆变器中就率先安装了24个由意法半导体生产的碳化硅MOSFET功率模块,这也是该种材料在民用方面较早的大规模应用。
以新能源汽车为例,根据Cree公司的计算,如果将纯电动汽车的电源元件转换为碳化硅,则可以提高电能转换效率,提高电能利用效率,降低无效热耗,从而降低整体能耗5%-10%。
2019年,碳化硅功率装置的市场规模达到5.41亿美元,2025年有望达到25.62亿,年均复合增长率30%左右。随着下游应用如电动车等的不断发展,导电碳化硅基板的市场将会迅速发展。
在应用方面,未来5年,高速发展的新能源汽车将是碳化硅行业的一个长期发展动力。2025-2030年,由于充电桩设施完善,光伏技术成熟,碳化硅产业有望成为第二、第三个驱动力。
三、应用市场十分广泛碳化硅不仅仅可以应用在新能源汽车,在高铁列车、航空航天、无线通讯等行业中都有广泛的应用前景,但碳化硅的市场潜力还没有完全开发出来,从产业链的中游来看,它的成长空间很大,将会是推动上游材料发展的一大推动力。

从航母到理想L9,为什么都用上这种材料,碳化硅有何优势?

2. 碳化硅前景广阔,国内碳化硅企业全力赶超

  本文章由湖南贝哲斯信息咨询有限公司研究发布,转载请注明来源。 
   以碳化硅为代表的第三代半导体具有出色的性能,例如高频、高效率、高输出、耐高压、耐高温和强抗辐射性,众多特点切合节能减排、智能制造、信息安全等国家重大战略需求,它们支撑新一代移动通信、新能源 汽车 、高速轨道列车等产业自主创新发展和转型升级的中心核心材料和电子元器件,已成为全球半导体技术和产业竞争焦点。
    碳化硅性能优势明显 
   由于碳化硅的禁止宽度是硅的三倍,所以碳化硅器件的泄漏电流明显小于硅器件的泄漏电流,从而降低了功率损耗。其次,碳化硅能耐高压,并且其击穿电场强度是硅的十倍以上。最后,碳化硅能耐高温。 碳化硅的热导率比硅更高,这使其更易于散发器件的热量。 但是,目前各种碳化硅器件的成本是硅基器件的2.4-8倍,其中衬底成本和外延成本最高,分别占47%和23%。
   从全球碳化硅衬底市场格局来看,美国的CREE在2018年以62%的市场份额领先,其次是美国的II-VI,市场份额约为16%。 总体而言,美国制造商主导着碳化硅市场。
       电动 汽车 推动碳化硅市场爆发 
   第三代半导体另一个重要产品碳化硅,则将受益于电动 汽车 行业的快速成长而迎来爆发机会。
   随着新能源 汽车 的发展,对功率半导体器件的需求日益增长。数据显示,传统燃料 汽车 中,半导体器件的平均价值为355美元,而新能源 汽车 中,半导体器件的价值为695美元,几乎翻了一番,其中,功率器件的增长最为显著,从17美元增加到265美元,增长幅度近15倍。目前市场上,用于新能源 汽车 的大多数功率半导体都是硅基器件,例如硅基IGBT和硅基MOSFET。随着技术和产品的成熟,第三代半导体将逐渐取代大多数硅基产品,市场对碳化硅的需求量越来越大。
   在2019年,以碳化硅为代表的第三代半导体电力电子设备应用在电动 汽车 领域取得了快速进展。全球有20多家 汽车 制造商在其车载充电器中使用碳化硅器件。特斯拉Model 3逆变器使用ST Microelectronics的全碳化硅功率模块。各 汽车 制造商都计划于未来几年内将碳化硅电力电子器件用于主逆变器中。在充电基础设施方面,台达联手通用等合作开发,将碳化硅功率半导体器件应用于400KW的拆快读充电器中。在电驱动方面,Cree联手,双方都已达成战略合作协议,促进使用基于碳化硅的逆变器开发电驱动动力总成。
    碳化硅在光伏产业中的应用 
   在太阳能应用中,基于硅器件的传统逆变器的成本约占系统的10%,但却是导致系统能量损耗的主要原因之一。将碳化硅MOSFET或碳化硅MOSFET与碳化硅SBD结合的功率模块的光伏逆变器可将转换效率从96%提高到99%以上,能源消耗有50%以上的降幅,并且设备使用寿命能够提升50%,达到减少系统体积、增加功率密度、延长设备寿命和降低制造成本的效果。高效率、高功率密度,高可靠性和低成本是太阳能逆变器的未来发展趋势。在组串式和集中式光伏逆变器中,碳化硅产品有望逐步取代硅基器件。
      碳化硅产业链依次为上游衬底,中游外延晶片制造,下游器件制造。从整个碳化硅产业来看,美国、日本和欧洲是产业内部的三老巨头。其中,美国全球独大,占世界碳化硅产量的70%至80%。CREE在碳化硅晶片市场中的市场份额高达60%;欧洲拥有完整的碳化硅衬底、外延、器件和应用程序的产业链,并且在全球电力电子市场中拥有较强的影响力。日本是设备和模块开发方面的绝对领导者。自上世纪八十年代以来,美国、日本和欧洲等发达国家一直将宽禁带半导体技术置于极其重要的战略地位,以保持在航空航天、军事和技术上的领先地位。这些国家和地区在碳化硅半导体领域,已走在世界前列。碳化硅半导体器件产业化主要以英飞凌、Cree公司、GE和罗姆公司、丰田公司等为代表。
    国内碳化硅半导体企业正全力赶超 
   与美日欧相比之下,我国碳化硅企业在技术、产能等方面虽然仍有欠缺,国内拥有全球最大的消费市场,增长速度高于世界平均水平。国第三代半导体产业从 2015 年开始高速增长,从终端市场看未来应用将广泛扩展到人工智能、新能源 汽车 、自动驾驶、5G 技术、车联网等领域。第三代半导体器件在新兴应用领域的渗透迅猛,国内市场化进度显著快于国外。当前我国碳化硅产业链已初具规模,具备将碳化硅产业化的基础,国内企业有望在本土市场应用中实现弯道超车,一些代表性的企业如天科合达、山东天岳、河北同光等竞争力不断提高。
   碳化硅半导体具有广泛的潜在应用,在新能源 汽车 、太阳能发电和其他电力相关领域均具有潜在价值。随着下游行业对具有轻量化、高转换效率和低发热特性的半导体功率器件的需求不断增长,工业发展不可避免地要用碳化硅代替功率器件中的硅。然而,碳化硅单晶和外延材料的高成本、材料缺陷等问题尚未完全解决,制造难度高,不成熟的器件封装无法满足高频和高温应用的需求,全球碳化硅技术与产业距离成熟尚有一定的差距,因此碳化硅器件市场的扩张步伐在一定程度上受到限制。
   碳化硅材料具有出色的耐热性、耐腐蚀性和导热性,应用前景非常广阔。作为第三代半导体材料,碳化硅得到外界越来越多的关注和重视,现已成为国内外研究热点。未来发展空间不可限量。在各国加紧布置的同时,国内也需要加快碳化硅半导体的整体研究与开发,创建一个独立且具有国际竞争力的碳化硅材料和器件产业。
    联系邮箱: 
    info@globalmarketmonitor.com 
    转载请关注公众号 Market Monitor 

3. “超能力材质”碳化硅首次应用 解析蔚来ET7电驱系统

电驱系统作为电动汽车的“心脏”,它的性能表现至关重要。想在竞争日益激烈的智能电动汽车赛道走得更远,就必须做得性能更强、续航里程更长。因此不少有能力的电动车企业选择了全栈自研三电系统,作为国内新势力车企头部的蔚来就是如此。

这几年我们不论从超跑EP9还是量产车型ES8、ES6、EC6身上都看到了其在性能方面的优势。大浪淘沙,蔚来能冲到行业头部,在极致的服务体系背后还是核心技术的支撑。在2022年第一季度即将交付的蔚来首款轿跑车ET7落地之前,我们来到了位于南京的蔚来先进制造技术中心(简称XPT)参观了解蔚来第二代电驱系统,而ET7正是首款应用第二代电驱系统的量产车型。在这套以“碳化硅SiC”为核心关键词的系统中,二代电驱系统相比之前有哪些改变?

我们知道电驱系统主要由电机、减速器和控制器三部分组成,电机又分为永磁同步电机和异步感应电机。我们先通过蔚来ET7了解下二代电驱系统,位于前轴的180kW永磁同步电机和位于后轴的300kW异步感应电机共同构成了蔚来二代电驱系统的电机部分,从ET7以后推出的车型也将开始搭载二代电驱系统。

回顾此前蔚来量产车型上的电驱系统配置你会发现,二代电驱系统的永磁同步电机和异步感应电机分别在一代电驱系统的基础上进行了升级:从数据上看,永磁同步电机从160kW升级到180kW,异步感应电机从240kW升级到300kW。而为了保证旗下车型的电驱的广泛适应匹配性,二代电驱系统在壳体规格上保持和一代系统一样的标准,以便于后续车型改款后升级。在此强调一点,蔚来也是少数的同时具备异步感应电机和永磁同步电机研发生产制造的企业。

而什么是碳化硅?它是一种材料,属于第三代宽禁带半导体材料,具有开关速度快,关断电压高和耐高温能力强等优点。碳化硅材料主要应用在二代电驱系统的主驱,也就是这个180kW的永磁同步电机上。从二代电驱系统整体看,它主要有三个特点:更高效率、更高性能、更安静。

利用碳化硅功率器件设计的电机控制器,能大幅提高永磁同步电机驱动系统的效率及功率密度。碳化硅器件应用于主驱,还能够提升电动汽车的续航能力。180kW永磁同步电机碳化硅模块的应用,使电控系统的综合损耗降低了4%~6%,很好的改善了ET7在城市工况下的功耗表现。具体来看:

1.更耐高温,同等体积下最大电流能力提升30%以上;
2.适合更宽电压范围工作,扩展兼容性更好;
3.开关速度更快,开关时的功率损耗更小;
4.多目标优化的高速驱动电路设计,采用更小环路电感,更强驱动芯片,来实现更快的开关速度;
5.多目标优化的效率控制策略,变开关频率+离散PWM方案可以大幅降低开关损耗,分别降低35%和33.3%,而调制优化策略则能有效的将系统功率提升5%~10%。这三项技术的加入,能够全面提升电驱动效率;
6.主驱电机CLTC工况效率≧91.5%。


碳化硅材质的应用以及多项的细节优化使得二代电驱系统性能得到提升:从性能参数看,ET7上的二代电驱系统综合峰值功率480kW,相比上代电驱系统提升20%;综合峰值扭矩850N·m,相比上代系统提升23%。它使得ET7百公里加速成绩可以达到3.9s。那系统功率扭矩提升的技术路径有三点:1.优化电磁电机方案;2.优化减速器速比;3.精准预估模块寿命。

前180kW永磁同步电机控制器电流提升,并优化了电机电磁方案,来提升电机功率;减速器速比也进行了调整,从9.57到了10.48,以获得更高的轮端扭矩;
后300kW异步感应电机的控制器电流能力同样进行了提升,并优化了电机电磁方案,提升了电机输出力矩。

这里说的还是180kW的前轴主驱电机,相比于160kW电驱系统,通过悬置融合控制的EDS总成模态优化、电机非均匀气隙及高正旋气隙磁密、齿轴结构优化设计和控制器谐波注入与控制策略的优化,在ET7上实现了更好的NVH效果,车内综合工况噪音进一步降低5-15dB。

1.基于悬置融合控制的EDS总成模态优化
EDS在开发之初,便从整车系统进行优化设计。悬置系统的动静刚度匹配,EDS的模态map的解耦等措施的应用,确保EDS总体架构的实现NVH性能最优。
2.电机非均匀气隙及高正旋气隙磁密
电机在提升性能的同时,通过电磁优化(非均匀气隙)均衡电磁径向力,并通过气隙的正旋化,优化了扭矩波动,达到的最佳的NVH表现。
3.齿轮的齿形齿向精密优化设计
通过对ET7电驱动系统内部齿轮的精密加工,在大批量制造的前提下,做到了微米级别的精度控制,可以让车辆工作时齿轮啮合时更为紧密,提升了传动效率,噪音也更小,可以进一步优化ET7的NVH表现。
4.谐波注入算法迭代优化噪声抖动
迭代优化的谐波抑制算法,在计算出谐波电压后,可以更好的对电压使用谐波电压进行补偿,使电机工作时所产生的电磁噪音,电驱动系统整体噪声降低5~15dB,为用户提供更静谧的驾驶环境。

此外值得一提的是,在二代电驱系统上电机加热电池功能下,当电池在低温下的性能较弱,电机系统通过开发特殊功能,在低温下通过优化利用电机的废热加热电池,最大能提供超4kW的加热功率(相当于4个家用电热炉),让电池始终处于最适宜的工作温度,在低温下能够获得更好的性能和续航表现。但这项功能会让电机产生额外的噪音表现,通过软件谐波控制算法,消除该工况下的噪音。

总结:

首发应用在ET7上的蔚来二代电驱系统最主要是实现了碳化硅的量产,它将于2022年一季度开始交付,蔚来实现这一目标也在行业前三的序列。从碳化硅的技术特性看确实有效提升了电驱系统的各项指标,以保证蔚来的最新三电系统仍保持较强的技术竞争实力。
而碳化硅本身不论从原材料角度还是核心技术研发角度都存在着“被卡脖子”的风险,尤其是核心模块目前仍需依赖进口,蔚来基于对碳化硅的长期看好也与对应的供应商公司签订了长期的合作协议,保证相对优先供货,目前来看这一技术路线的隐忧得到了不错的解决,我们也更期待早日体验到ET7的实际性能表现。

“超能力材质”碳化硅首次应用 解析蔚来ET7电驱系统

4. 揭秘第三代半导体,三大领域加速爆发!百亿市场火爆

随着绿色低碳战略的不断推进,提升能源利用效率和能源转换效率已经成为各行各业的共识,如何利用现代化新技术建成可循环的高效、高可靠性的能源网络,无疑是当前各国重点关注的问题。
  
 值此背景下,以碳化硅(SiC)、氮化镓(GaN)为代表的第三代半导体成为市场聚焦的新赛道。根据Yole预测数据, 2025年全球以半绝缘型衬底制备的GaN器件市场规模将达到20亿美元,2019-2025年复合年均增长率高达12%! 其中,军工和通信基站设备是GaN器件主要的应用市场,2025年市场规模分别为11.1亿美元和7.31亿美元;
  
  全球以导电型碳化硅衬底制备的SiC器件市场规模到2025年将达到25.62亿美元,2019- 2025年复合年均增长率高达30%! 其中,新能源汽车和光伏及储能是SiC器件主要的应用市场, 2025年市场规模分别为15.53亿美元和3.14亿美元。
  
 本文中,我们将针对第三代半导体产业多个方面的话题,与国内外该领域知名半导体厂商进行探讨解析。
  
 20世纪50年代以来,以硅(Si)、锗(Ge)为代的第一代半导体材料的出现,取代了笨重的电子管,让以集成电路为核心的微电子工业的发展和整个IT产业的飞跃。人们最常用的CPU、GPU等产品,都离不开第一代半导体材料的功劳。可以说是由第一代半导体材料奠定了微电子产业的基础。
  
 然而由于硅材料的带隙较窄、电子迁移率和击穿电场较低等原因,硅材料在光电子领域和高频高功率器件方面的应用受到诸多限制。因此,以砷化镓(GaAs)为代表的第二代半导体材料开始崭露头角,使半导体材料的应用进入光电子领域,尤其是在红外激光器和高亮度的红光二极管方面。与此同时,4G通信设备因为市场需求增量暴涨,也意味着第二代半导体材料为信息产业打下了坚实基础。
  
 在第二代半导体材料的基础上,人们希望半导体元器件具备耐高压、耐高温、大功率、抗辐射、导电性能更强、工作速度更快、工作损耗更低特性,第三代半导体材料也正是基于这些特性而诞生。
                                          
 笔者注意到,对于第三代半导体产业各家半导体大厂的看法也重点集中在 “高效”、“降耗”、“突破极限” 等核心关键词上。
                                          
  安森美中国汽车OEM技术负责人吴桐博士 告诉笔者: “第三代半导体优异的材料特性可以突破硅基器件的应用极限,同时带来更好的性能,这也是未来功率半导体最主流的方向。” 他表示随着第三代半导体技术的普及,传统成熟的行业设计都会有突破点和优化的空间。
  
  英飞凌科技电源与传感系统事业部大中华区应用市场总监程文涛 则从能源角度谈到,到2025年,全球可再生能源发电量有望超过燃煤发电量,将推动第三代半导体器件的用量迅速增长。 在用电端,由于数据中心、5G通信等场景用电量巨大,节电降耗的重要性凸显,也将成为率先采用第三代半导体器件做大功率转换的应用领域。 
                                          
  第三代半导体材料区别于前两代半导体材料最大的区别就在于带隙的不同。 第一代半导体材料属于间接带隙,窄带隙;第二代半导体材料属于直接带隙,同样也是窄带隙;二第三代半导体材料则是全组分直接带隙,宽禁带。
  
 和前两代半导体材料相比,更宽的禁带宽度允许材料在更高的温度、更强的电压与更快的开关频率下运行。
  
 随着碳化硅、氮化镓等具有宽禁带特性(Eg>2.3eV)的新兴半导体材料相继出现,世界各国陆续布局、产业化进程快速崛起。具体来看:
  
  与硅相比, 碳化硅拥有更为优越的电气特性 : 
  
  1.耐高压 :击穿电场强度大,是硅的10倍,用碳化硅制备器件可以极大地 提高耐压容量、工作频率和电流密度,并大大降低器件的导通损耗;
  
  2.耐高温 :半导体器件在较高的温度下,会产生载流子的本征激发现象,造成器件失效。禁带宽度越大,器件的极限工作温度越高。碳化硅的禁带接近硅的3倍,可以保证碳化硅器件在高温条件下工作的可靠性。硅器件的极限工作温度一般不能超过300℃,而碳化硅器件的极限工作温度可以达到600℃以上。同时,碳化硅的热导率比硅更高,高热导率有助于碳化硅器件的散热,在同样的输出功率下保持更低的温度,碳化硅器件也因此对散热的设计要求更低,有助于实现设备的小型化;
  
  3.高频性能 :碳化硅的饱和电子漂移速率是硅的2倍,这决定了碳化硅器件可以实现更高的工作频率和更高的功率密度。基于这些优良的特性,碳化硅衬底的使用极限性能优于硅衬底,可以满足高温、高压、高频、大功率等条件下的应用需求,已应用于射频器件及功率器件。
  
  氮化镓则具有宽禁带、高电子漂移速度、高热导率、耐高电压、耐高温、抗腐蚀、耐辐照等突出优点。 尤其是在光电子器件领域,氮化镓器件作为LED照明光源已广泛应用,还可制备成氮化镓基激光器;在微波射频器件方面,氮化镓器件可用于有源相控阵雷达、无线电通信、基站、卫星等军事 或者民用领域;氮化镓也可用于功率器件,其比传统器件具有更低的电源损耗。
  
 半导体行业有个说法: “一代材料,一代技术,一代产业” ,在第三代半导体产业规模化出现之前,也还存在着不少亟待解决的技术难题。
  
  第三代半导体全产业链十分复杂,包括衬底→外延→设计→制造→封装。 其中,衬底是所有半导体芯片的底层材料,起到物理支撑、导热、导电等作用;外延是在衬底材料上生长出新的半导体晶层,这些外延层是制造半导体芯片的重要原料,影响器件的基本性能;设计包括器件设计和集成电路设计,其中器件设计包括半导体器件的结构、材料,与外延相关性很大;制造需要通过光刻、薄膜沉积、刻蚀等复杂工艺流程在外延片上制作出设计好的器件结构和电路;封装是指将制造好的晶圆切割成裸芯片。
                                          
 前两个环节衬底和外延生长正是第三代半导体生产工艺及其难点所在。我们重点挑选碳化硅、氮化镓两种典型的第三代半导体材料来看,它们的生产制备到底还面临哪些问题。
  
  从碳化硅来看,还需要“降低衬底生长缺陷,以及提高工艺效率” 。首先碳化硅单晶制备目前最常用的是物理气相输运法(PVT)或籽晶的升华法,而碳化硅单晶在形成最终的短圆柱状之前,还需要通过机械加工整形、切片、研磨、抛光等化学机械抛光和清洗等工艺才能成为衬底材料。
  
 这一机械、化学制造过程存在着加工困难、制造效率低、制造成本高等问题。此外,如果再加上考虑单晶加工的效率和成本问题,那还能够保障晶片具备良好的几何形貌,如总厚度变化、翘曲度、变形,而且晶片表面质量(粗糙度、划伤等)是否过关等,这都是碳化硅衬底制备中的巨大挑战。
  
 此外,碳化硅材料是目前仅次于金刚石硬度的材料,材料的机械加工主要以金刚石磨料为基础切割线、切割刀具、磨削砂轮等工具。这些工具的制备难度大,使用寿命短,加工成本高,为了延长工具寿命、提高加工质量,往往会采用微量或极低速进给量,这就牺牲了碳化硅材料制备的整体生产效率。
  
  对于氮化镓来说,则更看重“衬底与外延材料需匹配”的难题 。由于氮化镓在高温生长时“氮”的离解压很高,很难得到大尺寸的氮化镓单晶材料,当前大多数商业器件是基于异质外延的,比如蓝宝石、AlN、SiC和Si材料衬底来替代氮化镓器件的衬底。
                                          
 但问题是这些异质衬底材料和氮化镓之间的晶格失配和热失配非常大,晶格常数差异会导致氮化镓衬底和外延层界面处的高密度位错缺陷,严重的话还会导致位错穿透影响外延层的晶体质量。这也就是为什么氮化镓更看重衬底与外延材料需匹配的难点。
  
 在落地到利用第三代半导体材料去解决具体问题时,程文涛告诉OFweek维科网·电子工程, 英飞凌的碳化硅器件所采用的沟槽式结构解决了大多数功率开关器件的可靠性问题。 
  
 比如现在大多数功率开关器件产品采用的是平面结构,难以在开关的效率上和长期可靠性上得到平衡。采用平面结构,如果要让器件的效率提高,给它加点电,就能导通得非常彻底,那么它的门级就需要做得非常薄,这个很薄的门级结构,在长期运行的时候,或者在大批量运用的时候,就容易产生可靠性的问题。
  
 如果要把它的门级做的相对比较厚,就没办法充分利用沟道的导通性能。而采用沟槽式的做法就能够很好地解决这两个问题。
                                          
 吴桐博士则从产业化的角度提出, 第三代半导体技术的难点在于有关设计技术和量产能力的协调,以及对长期可靠性的保障。尤其是量产的良率,更需要持续性的优化,降低成本,提升可靠性。 
  
  观察当前半导体市场可以发现,占据市场九成以上的份额的主流产品依然是硅基芯片。 
  
 但近些年来,“摩尔定律面临失效危机”的声音不绝于耳,随着芯片设计越来越先进,芯片制造工艺不断接近物理极限和工程极限,芯片性能提升也逐步放缓,且成本不断上升。
  
 业界也因此不断发出质疑,未来芯片的发展极限到底在哪,一旦硅基芯片达到极限点,又该从哪个方向下手寻求芯片效能的提升呢?笔者通过采访发现,国内外厂商在面对这一问题时,虽然都表达出第三代半导体产业未来值得期待,但也齐齐提到在这背后还需要重点解决的成本问题。
  
  “目前硅基半导体从架构上、从可靠性、从性能的提升等方面,基本上已经接近了物理极限。第三代半导体将接棒硅基半导体,持续降低导通损耗,在能源转换的领域作出贡献,” 程文涛也为笔者描述了当前市场上的一种现象:可能会存在一些定价接近硅基半导体的第三代半导体器件,但并不代表它的成本就接近硅基半导体。因为那是一种商业行为,就是通过低定价来催生这个市场。
  
  以目前的工艺来讲,第三代半导体的成本还是远高于硅基半导体 ,程文涛表示:“至少在可见的将来,第三代半导体不会完全取代第一代半导体。因为从性价比的角度来说,在非常宽的应用范围中,硅基半导体目前依然是不二之选。第三代半导体目前在商业化上的瓶颈就是成本很高,虽然在迅速下降,但依然远高于硅基半导体。”
  
 作为中国碳化硅功率器件产业化的倡导者之一,泰科天润同样也表示对第三代半导体产业发展的看好。
  
  虽然碳化硅单价目前比硅高不少,但从系统整体的角度来看,可以节约电感电容以及散热片。如果是大功率电源系统整体角度看成本未必更高,同时还能更好地提升效率。 这也是为什么现阶段虽然单器件碳化硅比硅贵,依然不少领域客户已经批量使用了。
  
 从器件的角度来看,碳化硅从四寸过度到六寸,未来往八寸甚至十二寸发展,碳化硅器件的成本也将大幅度下降。据泰科天润介绍,公司新的碳化硅六寸线于去年就已经实现批量出货,为客户提供更高性价比的产品,有些产品实现20-30%的降价幅度。除此之外,泰科天润耗时1年多成功开发了碳化硅减薄工艺,在Vf水平不变的情况下,可以缩小芯片面积,进一步为客户提供性价比更高的产品。
  
 泰科天润还告诉笔者:“这两年随着国外友商的缺货或涨价,比如一些高压硅器件,这些领域已经出现碳化硅取代硅的现象。随着碳化硅晶圆6寸产线生产技术的成熟,8寸晶圆的发展,碳化硅器件有望与硅基器件达到相同的价格水平。”
  
 吴桐博士认为, 目前来看在不同的细分市场,第三代半导体跟硅基器件是一个很好的互补,也是价钱vs性能的一个平衡。随着第三代半导体的成熟以及成本的降低,最终会慢慢取代硅基产品成为主流方案。 
  
 那么对于企业而言,该如何发挥第三代半导体的综合优势呢?吴桐博士表示,于安森美而言,首先是要垂直整合,保证稳定的供应链,可长期规划的产能布局以及达到客观的投资回报率;其次是在技术研发上继续发力,比如Rsp等参数,相比行业水准,实现用更小的半导体面积实现相同功能,这样单个器件成本得以优化;第三是持续地提升FE/BE良率,等效的降低成本;第四是与行业大客户共同开发定义新产品,保证竞争力以及稳定的供需关系;最后也是重要的一点,要帮助行业共同成长,蛋糕做大,产能做强,才能使得单价有进一步下降的空间。
  
 第三代半导体产业究竟掀起了多大的风口?根据《2020“新基建”风口下第三代半导体应用发展与投资价值白皮书》内容:2019年我国第三代半导体市场规模为94.15亿元,预计2019-2022年将保持85%以上平均增长速度,到2022年市场规模将达到623.42亿元。
  
 其中,第三代半导体衬底市场规模从7.86亿元增长至15.21亿元,年复合增速为24.61%,半导体器件市场规模从86.29亿元增长至608.21亿元,年复合增速为91.73%。
                                          
 得益于第三代半导体材料的优良特性,它在 光电子、电力电子、通讯射频 等领域尤为适用。具体来看:
  
  光电子器件 包括发光二极管、激光器、探测器、光子集成电路等,多用于5G通信领域,场景包括半导体照明、智能照明、光纤通信、光无线通信、激光显示、高密度存储、光复印打印、紫外预警等;
  
  电力电子器件 包括碳化硅器件、氮化镓器件,多用于新能源领域,场景包括消费电子、新能源汽车、工业、UPS、光伏逆变器等;
  
  微波射频器件 包括HEMT(高电子迁移率晶体管)、MMIC(单片微波集成电路)等,同样也是用在5G通信领域,不过场景则更加高端,包括通讯基站及终端、卫星通讯、军用雷达等。
                                          
 现阶段,欧美日韩等国第三代半导体企业已形成规模化优势,占据全球市场绝大多数市场份额。我国高度重视第三代半导体发展,在研发、产业化方面出台了一系列支持政策。国家科技部、工信部等先后开展了“战略性第三代半导体材料项目部署”等十余个专项,大力支持第三代半导体技术和产业发展。
  
 早在2014年,工信部发布的《国家集成电路产业发展推进纲要》提出设立国家产业投资基金,重点支持集成电路等产业发展,促进工业转型升级,同时鼓励社会各类风险投资和股权投资基金进入集成电路领域;在去年全国人大发布《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中,进一步强调培育先进制造业集群,推动集成电路、航空航天等产业创新发展。瞄准人工智能、量子信息、集成电路等前沿领域,实施一批具有前瞻性、战略性的国家重大科技项目。
                                          
 具体来看当前主要应用领域的发展情况:
  
  1.新能源汽车 
  
 新能源汽车行业是未来市场空间巨大的新兴市场,全球范围内新能源车的普及趋势明朗。随着电动汽车的发展,对功率半导体器件需求量日益增加,成为功率半导体器件新的经济增长点。得益于碳化硅功率器件的高可靠性及高效率特性,在车载级的电机驱动器、OBC及DC/DC部分,碳化硅器件的使用已经比较普遍。对于非车载充电桩产品, 由于成本的原因,目前使用比例还相对较低,但部分厂商已开始利用碳化硅器件的优势,通过降低冷却等系统的整体成本找到了市场。
  
  2.光伏 
  
 光伏逆变器曾普遍采用硅器件,经过40多年的发展,转换效率和功率密度等已接近理论极限。碳化硅器件具有低损耗、高开关频率、高适用性、降低系统散热要求等优点,将在光伏新能源领域得到广泛应用。例如,在住宅和商业设施光伏系统中的组串逆变器里,碳化硅器件在系统级层面带来成本和效能的好处。
  
  3.轨道交通 
  
 未来轨道交通对电力电子装置,比如牵引变流器、电力电子电压器等提出了更高的要求。采用碳化硅功率器件可以大幅度提高这些装置的功率密度和工作效率,有助于明显减轻轨道交通的载重系统。目前,受限于碳化硅功率器件的电流容量,碳化硅混合模块将首先开始替代部分硅IGBT模块。未来随着碳化硅器件容量的提升,全碳化硅模块将在轨道交通领域发挥更大的作用。
  
  4.智能电网 
  
 目前碳化硅器件已经在中低压配电网开始了应用。未来更高电压、更大容量、更低损耗的柔性输变电将对万伏级以上的碳化硅功率器件具有重大需求。碳化硅功率器件在智能电网的主要应用包括高压直流输电换流阀、柔性直流输电换流阀、灵活交流输电装置、高压直流断路器、电力电子变压器等装置中。
  
 第三代半导体自从在2021年被列入十四五规划后,相关概念持续升温,迅速成为超级风口,投资热度高居不下。
  
 时常会听到业内说法称,第三代半导体国内外都是同一起跑线出发,目前大家差距相对不大,整个产业发展仍处于爆发前的“抢跑”阶段,对国内而言第三代半导体材料更是有望成为半导体产业的“突围先锋”,但事实真的是这样吗?
  
 从起步时间来看,欧日美厂商率先积累专利布局,比如 英飞凌一直走在碳化硅技术的最前沿,从30年前(1992年)开始包含碳化硅二极管在内的功率半导体的研发,在2001年发布了世界上第一款商业化碳化硅功率二极管 ,此后至今英飞凌不断推出了各种性能优异的碳化硅功率器件。除了产品本身,英飞凌在2018年收购了Siltectra,致力于通过冷切割技术优化工艺流程,大幅提高对碳化硅原材料的利用率,有效降低碳化硅的成本。
  
 安森美也是第三代半导体产业布局中的佼佼者,据笔者了解, 安森美通过收购上游碳化硅供应企业GTAT实现了产业链的垂直整合,确保产能和质量的稳定。同时借助安森美多年的技术积累以及几年前收购Fairchild半导体基因带来的技术补充,安森美的碳化硅技术已经进入第三代,综合性能在业界处于领先地位 。目前已成为世界上少数提供从衬底到模块的端到端碳化硅方案供应商,包括碳化硅球生长、衬底、外延、器件制造、同类最佳的集成模块和分立封装方案。
  
 具体到技术上, 北京大学教授、宽禁带半导体研究中心主任沈波 也曾提出,国内第三代半导体和国际上差距比较大,其中很重要的领域之一是碳化硅功率电子芯片。这一块国际上已经完成了多次迭代,虽然8英寸技术还没投入量产,但是6英寸已经是主流技术,二极管已经发展到了第五代,三极管也发展到了第三代,IGBT也已进入产业导入前期。
  
 另外车规级的碳化硅MOSFET模块在意法半导体率先通过以后,包括罗姆、英飞凌、科锐等国际巨头也已通过认证,国际上车规级的碳化硅芯片正逐渐走向规模化生产和应用。反观国内,目前真正量产的主要还是碳化硅二极管,工业级MOSFET模块估计到明年才能实现规模量产,车规级碳化硅模块要等待更长时间才能量产。
  
 泰科天润也直言,国内该领域仍处于后发追赶阶段:器件方面,从二极管的角度, 国产碳化硅二极管基本上水平和国外差距不大,但是碳化硅MOSFET国内外差距还是有至少1-2代的差距 ;可靠性方面,国外碳化硅产品市场应用推广较早,积累了更加丰富的应用经验,对产品可靠性的认知,定义以及关联解决可靠性的方式都走得更前一些,国内厂家也在推广市场的过程中逐步积累相关经验;产业链方面,国外厂家针对碳化硅的材料优势,相关匹配的产业链都做了对应的优化设计,使之能更加契合的体现碳化硅的材料优势。
  
 OFweek维科网·电子工获悉,泰科天润在湖南新建的碳化硅6寸晶圆产线,第一期60000片/六寸片/年。此产线已经于去年实现批量出货,2022年始至4月底已经接到上亿元销售订单。 作为国内最早从事碳化硅芯片生产研发的公司,泰科天润积累了10余年的生产经验,针对特定领域可以结合自身的研发,生产和工艺一体化,快速为客户开发痛点新品 ,例如公司全球首创的史上最小650V1A SOD123,专门针对解决自举驱动电路已经替换高压小电流Si FRD解决反向恢复的痛点问题而设计。
  
 虽然说IDM方面,我国在碳化硅器件设计方面有所欠缺,少有厂商涉及于此,但后发追赶者也不在少数。
  
 就拿碳化硅产业来看,单晶衬底方面国内已经开发出了6英寸导电性碳化硅衬底和高纯半绝缘碳化硅衬底。 山东天岳、天科合达、河北同光、中科节能 均已完成6英寸衬底的研发,中电科装备研制出6英寸半绝缘衬底。
  
 此外,在模块、器件制造环节我国也涌现了大批优秀的企业,包括 三安集成、海威华芯、泰科天润、中车时代、世纪金光、芯光润泽、深圳基本、国扬电子、士兰微、扬杰科技、瞻芯电子、天津中环、江苏华功、大连芯冠、聚力成半导体 等等。
  
 OFweek维科网·电子工程认为,随着我国对新型基础建设的布局展开和“双碳”目标的提出,碳化硅和氮化稼等第三代半导体的作用也愈发凸显。
  
  上有国家支持政策,下有新能源汽车、5G通信等旺盛市场需求,  我国第三代半导体产业也开始由“导入期”向“成长期”过渡,初步形成从材料、器件到应用的全产业链。但美中不足在于整体技术水平还落后世界顶尖水平好几年,因此在材料、晶圆、封装及应用等环节的核心关键技术和可靠性、一致性等工程化应用问题上还需进一步完善优化。 
  
 当前,全球正处于新一轮科技和产业革命的关键期,第三代半导体产业作为新一代电子信息技术中的重点组成部分,为能源革命带来了深刻的改变。
  
 在此背景下,OFweek维科网·电子工程作为深耕电子产业领域的资深媒体,对全球电子产业高度关注,紧跟产业发展步伐。为了更好地促进电子工程师之间技术交流,推动国内电子行业技术升级,我们继续联袂数十家电子行业企业技术专家,推出面向电子工程师技术人员的专场在线会议  「OFweek 2022 (第二期)工程师系列在线大会」  。
  
 本期在线会议将于6月22日在OFweek官方直播平台举办,将邀请国内外知名电子企业技术专家,聚焦半导体领域展开技术交流,为各位观众带来技术讲解、案例分享和方案展示。

5. 半导体“卡脖子”的核心技术,第三代半导体材料的研发与突破

 电子发烧友网报道(文/程文智)在目前的中美贸易摩擦下,电子产业首当其冲,特别是芯片产业,据业内人士透露,现在跟美国的公司交易,周期一般都特别长,而且基本都需要提前付款和面临各种各样的审查。如果是跟华为有交易的话,还要求来自美国的技术不能超过25%。这迫使国内很多企业不得不考虑国内的供应链企业提供的产品。
     
   在半导体行业方面,根据2018年的统计数据,美国在全球半导体市场占有的份额为48%、韩国为24%、中国除去外资企业的市场份额的话,仅占3%左右的市场份额,当然这两年这个比例可能有所提升。
     
        
   即便美国已经占了如此多的市场份额,美国国防部在今年上半年,还调整了其12个重点发展的关键技术顺序,将微电子技术和5G军事技术调整到了前两位。在2019年的时候超高速、飞行器、生物技术排在前几位。
     
   西安电子 科技 大学微电子学院副院长、宽禁带半导体国家工程研究中心马晓华在最近的一个论坛上分析称,半导体芯片的博弈是如此的激烈,主要原因是 一个技术密集型的企业,不管从材料、制造以及装备,甚至包括它的管理和运营都是非常专业的一个体系,基本上涵盖了所有技术,走在最先进的前沿。 
     
   根据整个集成电路发展规律,半导体进行已经进入了5纳米的技术节点,从常规的二维的器件向三维器件发展。技术节点的发展,带来了一个很大的挑战,就是整个加工的能力逐渐集中到极少数的企业。
     
   对于美国来说,这几年他最大的一个优势是大量的研发投入,去年整个半导体收入有2260多亿美元,有17%的研发投入。正是因为美国的高投入,使得它能在半导体领域长期处于领导地位。不过这几年来,中国也开始加大了半导体基础方面的投入,这也是我们目前发展迅速的一个主要原因。
     
        
   集成电路芯片技术发展趋势,除了常规的硅基,沿着制程不断缩小,实际上还有几个方面的发展趋势,从材料、器件和功能方面的高度融合,包括提供MEMS技术以及新型材料石墨烯的技术、光电以及通信一体化的芯片技术,甚至包括生物、传感、有源无源、功率射频如何融入一体的发展。所以未来的发展除了沿着摩尔定律制程的缩小以外,还有就是多功能的发展,以及个性化从新材料重新发展的体系。
     
   在材料方面,除了硅基,第三代宽禁带半导体是这几年的热门技术,我国除了在硅基方面进行追赶外,在第三代半导体方面也做了很多投入,有了不少的创新研究。
     
   其实,宽禁带半导体,经过LED照明和Micro LED的技术发展,它的市场已经比较成熟了,现在宽禁带半导体产业的产能已经有了很大的提升,成本也在逐渐下降。因此,宽禁带半导体在的电子器件,包括射频功率器件、 汽车 雷达、卫星通信,以及5G基站和雷达预警等应用领域开始得到应用。在电力电子方面,尤其是电动 汽车 应用领域,充电桩和手机充电器将是很大的一块市场。新能源 汽车 方面,特斯拉已经将碳化硅器件应用在了Model 3上,后续可能会有更多的 汽车 厂商跟进。
     
   在未来的发展,包括未来6G通信,未来定义的业务它的频段更高,通信的速率更高,这一块未来主体的材料,硅基器件的性能已经不能满足要求,这对氮化镓器件的发展提供了更大的动力。
     
   据马晓华介绍,西安电子 科技 大学在2000年初就开始了基于第三代半导体方面的研究。目前他们主要基于两个平台:一是宽禁带半导体器件与集成电路国家工程研究中心;二是两个国家级的重点实验室。
     
        
   “我们在早期围绕着第三代半导体材料生长设备以及它解决材料生长过程中的一些关键技术问题,包括我们器件的设计、最终的应用和它的可靠性分析,整个实验室是一个非常完整的第三代半导体,材料和芯片研究的体系。目前我们实际上具备了整个小批量,可以实现大功率,或者毫米波芯片的设计和制造能力。”马晓华表示。
     
        
   目前,他们主要的研发包括 面向高质量外延片的生产,包括基于碳化硅,大储存的硅寸,以及我们先进的氮化镓器件制造工艺,基于5G基站用的大功率芯片,以及高频和超高频的芯片,包括电源转换的电力电子芯片。 他还透露,“基于应用端我们也有一些功率研究以及MMIC电路的封装体系,我们也是希望和终端用户实现未来在芯片实际应用的全路径的体系。”
     
   从2000年开始,马晓华他们的团队分别从设备、材料、芯片以及电路方面进行攻关,并取得了一定的成绩,2009年他们的设备获奖,2015年设计的器件获奖,2018、2019年在应用放,他们也获得了国家的 科技 发明,或者是 科技 进步奖。
     
        
    第三代半导体方面的成果 
     
       
        
    一是氮化  镓  半导体设备。 在最开始,马晓华他们团队需要解决的是第三代半导体材料生产的设备问题,包括高温MOCVD,因为在早期,氮化镓的设备对我国的限制还比较大,但是目前问题已经基本得到了解决。国内这几年,整个MOCVD设备已经占了国内市场的50%以上。其2007年研发出的620型第三代MOCVD设备还获得了2009年国家发明二等奖。
     
        
    二是氮化镓毫米波功率器件。 因为氮化镓一个很大的优势,它可以在高频条件下,实现大的功率输出。其团队研发的氮化镓毫米波功率器件实现了高频、高效率氮化镓微波功率器件的核心技术开发,其毫米波段器件和芯片技术指标达到了国际领先水平。马晓华透露说,目前他们的器件在6GHz频段能够满足5G毫米波的需求。
     
        
    三是面向5G的C波段高效率氮化镓器件。 该类器件主要是面向基站使用的。目前基于4英寸或者6英寸大功率的氮化镓基站芯片,主要的应用场景是C波段,它可以实现更高的输出效率和更高的输出功率,“目前我们对100瓦基站用的芯片,效率可以到72%,这个效率相对于硅基MOCVD来讲,整个技术进展还是蛮快的。”马晓华指出。
     
   他还进一步指出,对于脉冲方面,如果通过一些斜波的技术处理,他们也可以实现85%的效率,基本上快接近微波的极限效率。
     
        
    四是低压氮化镓HEMT射频器件。 未来氮化镓器件除了在基站中使用外,能够在终端上也使用氮化镓技术呢?这就涉及到了低压氮化镓射频器件的发展了。也就是说要从新的材料体系方面去更新,实现氮化镓射频器件在终端上的应用,即在10V以下的工作电压下,是不是还能实现更高效率跟带宽的情况,“这块我们也做了前瞻的研究,在6V的工作条件下,它的效率可以达到65%以上,整个体系基本上已经接近砷化镓在目前手机中的应用效率。”马晓华透露。
     
        
    五是氮化镓高线性毫米波器件。 这类器件主要解决的是快速的压缩问题。我们现在的通信对于线性主要是通过电路和系统去提升,它牺牲的是效率,马晓华指出,“我们能否从器件的结构,工作原理中提升它的线性,这个也是未来氮化镓在5G通信中非常有用的场景。”
     
        
    六是氮化  镓  微波功率芯片。 他们团队在整个S波段以下,未来通信的频段都有一系列的研究成果。包括未来面向毫米波,在19-23GHz,或者23-25GHz等频段,即未来5G的毫米波通信芯片方面也做了相关的研究,他透露说,目前他们研发的芯片产品主要是基于氮化镓低噪运放、驱动功放以及功率放大器等。
     
       
    七是异质结构新材料与多功能集成器件。 未来的器件,除了基于氮化镓的器件,还有很多基于异质结构,或者多功能的芯片,它的模型基于硅基的氮化镓,以及硅基CMOS器件异质集成,因为如果采用硅基的话能够大大降低氮化镓和砷化镓铟等芯片成本,实现与CMOS集成、多功能集成,大大降低功耗。“这块我们也做了一些研究,通过对不同材料的转移和建核的方法,目前也实现了对硅基材料和氮化镓材料两种器件的优势互补,在未来电力电子这块,可能它的应用场景比较高。”马晓华指出。
     
        
    八是大尺寸硅基氮化镓射频技术。 如果要大量的展开应用,尤其我们的消费电子类产品,对成本的要求很高。因此,低成本、大尺寸、基于硅基的氮化镓射频技术,也是一个需要发展的产业。这些技术的发展,一定会促进氮化镓在整个产业链中的应用,同时也降低了它的应用成本。
     
        
    九是氮化  镓  可靠性机理研究。 马晓华也坦承,虽然第三代半导体的研究取得了一定的成果,但目前还有很多问题需要解决,比如氮化镓的可靠性和一些机理性问题,还需要企业应用过程中逐步反映到研发机构,他们相互去解决。“目前很多基于氮化镓机理性的问题,包括它的可靠性方面,我们还有一些机理上不是那么清晰和明确,这一块可能还需要一段时间,从应用的层面和研究的层面去协同解决”。
     
    结语 
     
   对于第三代半导体器件和集成电路未来产业的发展,目前在通信、 汽车 和智能化未来的应用方面有非常大的潜力。国内目前从事这方面研究的企业和研究机构也很多,我们需要考虑的是如何从全产业链方面布局,实现产业化的聚集,从设备、材料,芯片设计制造和封测应用、服务以及人才方面的布局。
     
   第三代半导体是一个很好的产业,也有着很好的机遇,目前正好面临着通信的高度发展,可以说现在是发展第三代半导体最好的时代。

半导体“卡脖子”的核心技术,第三代半导体材料的研发与突破

6. 蔚来et5和蔚来et7上使用的碳化硅电机有哪些特点?

XPT蔚来驱动科技研发的第二代电驱动平台,使用了碳化硅模块。
碳化硅作为最典型的第三代宽禁带半导体材料,具有开关速度快,关断电压高和耐高温能力强等优点。
利用碳化硅功率器件设计的电机控制器,大幅提高了电机驱动系统的效率及功率密度,还能够提升电动汽车的续航能力。
碳化硅模块的应用,还让电控系统的综合损耗降低了4%~6%,改善了ET7在城市工况下的功耗表现。  有帮助的话,求给大大的赞。

7. 特斯拉领跑!全球首批使用SiC芯片汽车诞生

  近日,据外媒报道,一大批采用SiC(碳化硅)芯片的新型 汽车 正在路上,作为全球首批采用SiC芯片的 汽车 ,特斯拉Model3拥有更长的续航时间,更加优秀的持续高性能表现,而这些提升正是它引领了市场开始变化的重要原因之一。
     
   在过去的数十年里,半导体市场对硅坚持不懈的研究已经到了技术上的天花板,而SiC(碳化硅)的出现打破了现有的瓶颈期。与传统的硅晶片相比,它拥有更好的稳定性,能让芯片制造商将能量损失减少一半以上,以便更好发挥性能。
  
   作为第三代半导体的代表,SiC(碳化硅)是一种无机物,它在各个领域的使用相当广泛,如我们熟知的铁路运输、电力运输,还有正当风口的混合动力 汽车 和纯电动 汽车 。SiC相比起上一代半导体材料,它提供了更加稳定的化学键,同时它也拥有在降低电能转换过程中的能量损耗、更容易实现小型化和更耐高温高压三方面的优势。
     
   在特斯拉Model3上的初次亮相,让全球 汽车 厂商将目光放在了SiC这种全新的半导体材料,在庞大的市场需求推动下,一大批采用这种材质芯片的 汽车 已经正在路上。其中,由英飞凌制造的SiC芯片已经确定搭载在现代的新款电动 汽车 上,与配备普通硅芯片的 汽车 相比,其电动 汽车 的续航里程可提高 5%。
     
   SiC在新能源 汽车 领域的广泛应用将为其突破现有的关于电池、能耗与控制系统上的瓶颈,对于整个行业的发展具有积极意义,尤其是在整体成本的控制上,这点从现有的首批采用SiC的 汽车 特斯拉Model3上已经有所体现。根据法国市场研究公司Yole Development的预测,至2026年SiC芯片市场相较2020将上升6倍。

特斯拉领跑!全球首批使用SiC芯片汽车诞生

8. 什么是第三代半导体?包你能看懂

  作者/朱公子   
    第三代半导体 
     
   我估摸着只要是炒股或者是关注二级市场的朋友们,这几天一定都没少听这词儿,如果不是大盘这几天实在是太惨了,估计炒作行情会比现在强势的多得多。
     
   那到底这所谓的第三代半导体,到底是个什么玩意?值不值得炒?未来的逻辑在哪儿?
     
   接下来,只要您能耐着性子好好看,我保证给它写的人人都能整明白,这可比你天天盯着大盘有意思的多了!
     
    一、为什么称之为第三代半导体? 
   1、重点词
   客官们就记住一个关键词—— 材料 ,这就是前后三代半导体之间最大的区别。
   2、每一代材料的简述
    ①第一代半导体材料: 主要是指硅(Si)、锗元素(Ge)半导体材料。
       兴起时间: 二十世纪五十年代。
    代表材料: 硅(Si)、锗(Ge)元素半导体材料。
    应用领域: 集成电路、电子信息网络工程、电脑、手机、电视、航空航天、各类军事工程和迅速发展的新能源、硅光伏产业。
     历史 意义: 第一代半导体材料引发了以集成电路(IC)为核心的微电子领域迅速发展。
   对于第一代半导体材料,简单理解就是:最早用的是锗,后来又从锗变成了硅,并且几乎完全取代。
    原因在于: ①硅的产量相对较多,具备成本优势。②技术开发更加完善。
   但是,到了40纳米以下,锗的应用又出现了,因为锗硅通道可以让电子流速更快。现在用的锗硅在特殊的通道材料里会用到,将来会涉及到碳的应用,下文会详细讲解。
    ②第二代半导体材料: 以砷化镓(GaAs)、锑化铟(InSb)为代表,是4G时代的大部分通信设备的材料。
       兴起时间: 20世纪九十年代以来,随着移动通信的飞速发展、以光纤通信为基础的信息高速公路和互联网的兴起,以砷化镓、锑化铟为代表的第二代半导体材料开始崭露头角。
    代表材料: 如砷化镓(GaAs)、锑化铟(InSb);三元化合物半导体,如GaAsAl、GaAsP;还有一些固溶体半导体,如Ge-Si、GaAs-GaP;玻璃半导体(又称非晶态半导体),如非晶硅、玻璃态氧化物半导体;有机半导体,如酞菁、酞菁铜、聚丙烯腈等。
    应用领域: 主要用于制作高速、高频、大功率以及发光电子器件,是制作高性能微波、毫米波器件及发光器件的优良材料。
   因信息高速公路和互联网的兴起,还被广泛应用于卫星通讯、移动通讯、光通信和 GPS 导航等领域。
    性能升级: 以砷化镓为例,相比于第一代半导体,砷化镓具有高频、抗辐射、耐高温的特性。
    总结: 第二代是使用复合物的。也就是复合半导体材料,我们生活中常用的是砷化镓、磷化铟这一类材料,可以用在功放领域,早期它们的速度比较快。
   但是因为砷含剧毒!所以现在很多地方都禁止使用,砷化镓的应用还只是局限在高速的功放功率领域。而磷化铟则可以用来做发光器件,比如说LED里面都可以用到。
    ③第三代半导体材料: 以氮化镓(GaN)、碳化硅(SiC)、氧化锌(ZnO)、金刚石为四大代表,是5G时代的主要材料。
       起源时间: M国早在1993年就已经研制出第一支氮化镓的材料和器件。而我国最早的研究队伍——中国科学院半导体研究所,在1995年也起步了该方面的研究。
    重点: 市场上从半年前炒氮化镓的充电器时,市场的反应一直不够强烈,那是因为当时第三代半导体还没有被列入国家“十四五”这个层级的战略部署上,所以单凭氮化镓这一个概念,是不足以支撑整个市场逻辑的!
    发展现状: 在5G通信、新能源 汽车 、光伏逆变器等应用需求的明确牵引下,目前,应用领域的头部企业已开始使用第三代半导体技术,也进一步提振了行业信心和坚定对第三代半导体技术路线的投资。
    性能升级: 专业名词咱们就不赘述了,通俗的说,到了第三代半导体材料这儿,更好的化合物出现了,性能优势就在于耐高压、耐高温、大功率、抗辐射、导电性能更强、工作速度更快、工作损耗更低。
   有一点我觉得需要单独提一下:碳化硅与氮化镓相比较,碳化硅的发展更早一些,技术成熟度也更高一些;两者有一个很大的区别是热导率:在高功率应用中,碳化硅占据统治地位;氮化镓具有更高的电子迁移率,因而能够比碳化硅具有更高的开关速度,所以在高频率应用领域,氮化镓具备优势。
     
    第三代半导体的应用 
     
    咱们重点说一说碳化硅 。碳化硅在民用领域应用非常广泛:其中电动 汽车 、消费电子、新能源、轨道交通等领域的直流、交流输变电、温度检测控制等。
   咱先举两个典型的例子:
   1.2015年,丰田 汽车 运用碳化硅MOSFET的凯美瑞试验车,逆变器开关损耗降低30%。
   2.2016年,三菱电机在逆变器上用到了碳化硅,开发出了全世界最小马达。
   而其他军用领域上,碳化硅更是广泛用于喷气发动机、坦克发动机、舰艇发动机、风洞、航天器外壳的温度、压力测试等。
   为什么我说要重点说说碳化硅呢?因为半导体产业的基石正是 芯片 ,而碳化硅,正因为它优越的物理性能,一定是将来 最被广泛使用在制作半导体芯片上的基础材料 !
   ①优越的物理性能:高禁带宽度(对应高击穿电场和高功率密度)、高电导率、高热导率。而且,碳化硅MOSFET将与硅基IGBT长期共存,他们更适合应用在高功率和高频高速领域。
   ②这里穿插了一个陌生词汇:“禁带宽度”,这到底是神马东西?
   这玩意如果解释起来,又得引申出如“能带”、“导带”等一系列的概念,如果不是真的喜欢,我觉得大家也没必要非去研究这些,单说在第三代半导体行业板块中,能知道这一个词,您已经跑赢90%以上的小散了。
   客观们就主要记住一个知识点吧: 对于第三代半导体材料,越高的禁带宽度越有优势 。
   ③主要形式:“衬底”。半导体芯片又分为:集成电路和分立器件。但不论是集成电路还是分立器件,其基本结构都可划分为“衬底 -外延-器件”结构,而碳化硅在半导体中存在的主要形式是作为衬底材料。
     
        
   ④生产工艺流程:
   原料合成——晶体生长——晶锭加工——晶体切割——晶片研磨——晶片抛光——晶片检测——晶片清洗
   总结:晶片尺寸越大,对应晶体的生长与加工技术难度越大,而下游器件的制造效率越高、单位成本越低。目前国际碳化硅晶片厂商主要提供4英寸至6英寸碳化硅晶片,CREE、II-VI等国际龙头企业已开始投资建设8英寸碳化硅晶片生产线。
   ⑤应用方向:科普完知识、讲完生产制造,最终还是要看这玩意儿怎么用,俩个关键词:功率器件、射频器件。
    功率器件: 最重要的下游应用就是—— 新能源 汽车  !
   现有技术方案:每辆新能源 汽车 使用的功率器件价值约700美元到1000美元。随着新能源 汽车 的发展,对功率器件需求量日益增加,成为功率半导体器件新的增长点。
   新能源 汽车 系统架构中,涉及到功率器件包括——电机驱动系统、车载充电系统(OBC)、电源转换系统(车载DC/DC)和非车载充电桩。碳化硅功率器件应用于电机驱动系统中的主逆变器。
   另外还应用领域也包括——光伏发电、轨道交通、智能电网、风力发电、工业电源及航空航天等领域。
    射频器件: 最重要的下游应用就是—— 5G基站 !
   微波射频器件,主要包括——射频开关、LNA、功率放大器、滤波器。5G基站则是射频器件的主要应用方向。
   未来规模:5G时代的到来,将为射频器件带来新的增长动力!2025年全球射频器件市场将超过250亿美元。目前我国在5G建设全球领先,这也是对岸金毛现在狗急跳墙的原因。
   我国未来计划建设360万台-492万台5G宏基站,而这个规模是4G宏基站的1.1-1.5倍。当前我国已经建设的5G宏基站约为40万台,未来仍有非常大的成长空间。
     
    半导体行业的核心 
     
   我相信很多客官一定有这样的疑问: 芯片、半导体、集成电路 ,有什么区别?
    1.半导体: 
    从材料方面说 ,教科书上是这么描述的:Semiconductor,是常温下导电性能介于导体与绝缘体之间的一类材料;
    按功能结构区分, 半导体行业可分为:集成电路(核心)、分立器件、光电器件及传感器四大类。
    2.集成电路(IC, integrated circuit): 
   最经典的定义就是:将晶体管、二极管等等有源元件、电阻器、电容器等无源元件,按照一定的电路互联,“集成”在一块半导体单晶片上,从而完成特定的电路或者系统功能。
    3.芯片: 
    半导体元件产品的统称 ,是指内含集成电路的硅片,是集成电路的载体,由晶圆分割而成。硅片是一块很小的硅,内含集成电路,它是计算机或者其他电子设备的一部分。
    为什么说集成电路,是半导体行业的核心? 那是因为集成电路的销售比重,基本保持在半导体销售额的80%。
   比如,2018年全球4700亿美元的半导体销售额中,集成电路共计3900亿美元,占比达84%。
     
    第三代半导体的未来方向 
     
   中国半导体业进入IDM模式是大势所趋,其长久可持续性我非常认可。但是讲到IDM,又有一堆非常容易混淆的概念,篇幅实在是太长了,咱们就不再拆分来讲了,你只要知道IDM最牛逼就完事了!
    IDM: 直译:Integrated Design and Manufacture, 垂直整合制造 。
    1.IDM企业: IDM商业模式,就是国际整合元件制造商模式。其厂商的经营范围涵盖了IC设计、IC制造、封装测试等各个环节,甚至也会延伸到下游电子终端。典型厂商:Intel、三星、TI(德州仪器)、东芝、ST(意法半导体)等。
    2.IDM模式优势: 
   (1)IDM模式的企业,内部有资源整合优势,从IC设计到IC制造所需的时间较短。
   (2)IDM企业利润比较高。根据“微笑曲线”原理,最前端的产品设计、开发与最末端的品牌、营销具有最高的利润率,中间的制造、封装测试环节利润率较低。
   (3)IDM企业具有技术优势。大多数的IDM企业都有自己的IP(知识产权),技术开发能力比较强,具有技术领先优势。
      3.IDM重要性 
   IDM的重要性是不需要用逻辑去判断的,全球集成电路市场的60%由IDM企业所掌握。比如三星电子、恩智浦、英飞凌、NXP等。
    4.中国为什么要发展IDM模式? 
    IDM模式的优势: 产业链内部直接整合、具备规模效应、有效缩短新产品上市时间、并将利润点留在企业内部。
    市场的自然选择: 此外,中国已成为全球最大的集成电路消费市场,并具有丰富的劳动力资源,对于发展自有品牌的IDM具有市场优势和成本优势。
   现在,无论是被M国的封锁倒逼出来,还是我们自主的选择,我们都必须开拓出一条中国IDM发展之路!
    现状: 目前国内现有的所谓IDM,其制造工艺水平和设计能力相当低,比较集中在功率半导体,产品应用面较窄,规模做不大。我知道,这些事实说出来挺让人沮丧的,但这就是事实。
    但正因为我们目前处在相对落后的阶段,才更加需要埋头苦干、咬牙追赶,然后一举拿下! 
   本来写这篇文章的时候不想说股的,但还是提几只吧,也算是给咱们国家的半导体事业做一点点微小的贡献。    
    射频类相关优质标的:卓胜微、中天 科技 、和而泰、麦捷 科技 ; 
    IDM相关优质标的:中环股份、上海贝岭、长电 科技  。
     
最新文章
热门文章
推荐阅读