量子计算机的工作原理,为何计算能力如此强大?

2024-05-19 04:11

1. 量子计算机的工作原理,为何计算能力如此强大?

 
   1947年,美国计算机工程师霍华德·艾肯说,只需要六个比特位的电脑将能够满足世界的所有计算需求。当然,霍华德没有想到科学研究以及人们生活会产生如此大量数据,个人电脑的激增和互联网的出现,这些都推动了我们对计算能力的需求。
   
   如果按照摩尔定律的规定,微处理器上的晶体管数量每18个月继续增加一倍,那么2020年或2030年将发现微处理器上的电路在原子尺度上进行测量。而到达原子尺度则不可控,所以我们的下一步是创造量子计算机,它将利用原子和分子的力量来执行记忆和处理任务。
   图灵于20世纪30年代开发的 图灵机 是一种理论设备,由无限长度的磁带组成,分为小方块,每个方块可以包含符号(1或0)或留空。读写设备读取这些符号和空白,从而为机器提供执行某个程序的指令。
   
   这听起来很熟悉吧?
   那么,在 量子图灵机 中,区别在于磁带存在于量子状态,读写头也是如此。这意味着磁带上的符号可以是0或1或0和1的叠加态;换句话说,符号同时是0和1(以及其间的所有点)。普通的图灵机一次只能执行一次计算,但量子图灵机可以同时执行多次计算(2的n次方)。
   
   今天的计算机,通过操纵存在于两种状态之一的位来工作:0或1。量子计算机不限于两种状态;它们将信息编码为量子比特,它们可以叠加存在。量子点代表原子、离子、光子或电子以及它们各自的控制设备,它们一起工作以充当计算机的存储器和处理器。因为量子计算机可以同时包含这些 多个态 ,所以它有可能比当今最强大的超级计算机强大数万倍。(例如,一个500量子位的计算机,它每一步就可以实现多达2的500次方的运算)
   
   举个简单的例子,拿我国的 天河二号 超级计算机来比较,一个需要 天河二号 运算100年的计算,换为量子计算机的话,理论上只需要0.02秒的时间。
   量子比特的叠加使量子计算机具有固有的并行性。根据物理学家David Deutsch的说法,这种并行性允许量子计算机同时处理一百万次计算。一个50量子比特位计算机将等同与传统超级计算机的处理能力,该计算机可以以每秒数万亿次浮点运算运行。今天通用的家庭台式计算机以每秒数十亿次浮点运算的速度运行。
   
   在量子计算机的研发过程中,有 两大难题 需要突破,一是算法的确定,二是要选择合适的材料和制造条件,来制造出量子计算机。
   首先在算法方面,由于量子计算机完全不同于现有的计算机系统,因此,它的整个算法都要重新研究确定,其中由贝尔实验的美国科学家 彼得.秀尔 所提出的 秀尔算法 被广泛采用。
   
   由于量子计算机系统环境的要求极为苛刻,环境的热辐射、电磁辐射和材料缺陷都会引起计算错误,因此,人们一直在寻求最适合的材料。 1 超导材料铌,这个材料需要主机被液态氦冷冻到0.005K,即零下273.145摄氏度(比较成熟), 2 稀土金属,例如镨(探究中)。
   计算机科学家通过使用控制设备控制在量子计算机中充当量子位的微观粒子。
    离子阱使用光学或磁场(或两者的组合)来捕获离子。 
    光阱使用光波来捕获和控制粒子。 
    量子点由半导体材料制成,用于包含和操纵电子。 
    半导体杂质通过使用半导体材料中的"不需要的"原子来包含电子。 
    超导电路允许电子在非常低的温度下几乎没有电阻地流动。 
   
    下面,将介绍量子计算领域的一些最新进展 
   2001年来自IBM和斯坦福大学的科学家在量子计算机上成功演示了Shor算法。Shor算法是一种寻找数字素数因子的方法(在密码学中起着固有的作用)。他们使用7比特的计算机来找出15的因子,计算机正确地推断出素因子是3和5。
   2005年因斯布鲁克大学的量子光学和量子信息研究所宣布他们使用离子阱创造了第一个8量子比特位的计算机。
   2006年滑铁卢和马萨诸塞州的科学家们设计了一种12比特系统的量子控制方法。
   
   2007年加拿大初创公司D-Wave展示了一款商用16量子比特位的计算机(猎户座)。计算机解决了数独谜题和其他模式匹配问题。该公司声称它将在2008年之前已生产出了实用的系统。
   
   2015年3月 谷歌发布了首款达到 9量子位的芯片 ,该产品基于量子纠缠协议和线性结构进行设计,并利用名为"基偶校验"的检查方法,通过测量每个量子位的相互作用来追溯计算过程,从而降低因量子纠缠现象导致的计算错误率。
   
   但量子计算仍处于早期发展阶段,许多计算机科学家认为创建实用的量子计算机所需的技术还需要数年时间,量子计算机必须有50量子比特才能解决现实问题。
   

量子计算机的工作原理,为何计算能力如此强大?

2. 量子计算机的威力


3. 量子计算机有多强大

普通的数字计算机在0和1的二进制系统上运行,称为“比特”(bit)。但量子计算机要远远更为强大。它们可以在量子比特(qubit)上运算,可以计算0和1之间的数值。假想一个放置在磁场中的原子,它像陀螺一样旋转,于是它的旋转轴可以不是向上指就是向下指。常识告诉我们:原子的旋转可能向上也可能向下,但不可能同时都进行。但在量子的奇异世界中,原子被描述为两种状态的总和,一个向上转的原子和一个向下转的原子的总和。在量子的奇妙世界中,每一种物体都被使用所有不可思议状态的总和来描述。
实际运用
D-Wave 量子计算机-首台商用量子计算机在2007年,加拿大计算机公司D-Wave展示了全球首台量子计算机“Orion(猎户座)”,它利用了量子退火效应来实现量子计算。该公司此后在2011年推出具有128个量子位的D-Wave One型量子计算机并在2013年宣称NASA与谷歌公司共同预定了一台具有512个量子位的D-Wave Two量子计算机。
NSA加密破解计划
2014年1月3日,美国国家安全局(NSA)正在研发一款用于破解加密技术的量子计算机,希望破解几乎所有类型的加密技术。投入巨资 投入4.8亿进行“渗透硬目标”
首台编程通用量子计算机
2009年11月15日,世界首台可编程的通用量子计算机正式在美国诞生。不过根据初步的测试程序显示,该计算机还存在部分难题需要进一步解决和改善。科学家们认为,可编程量子计算机距离实际应用已为期不远。
单原子量子信息存储首次实现
2013年5月,德国马克斯普朗克量子光学研究所的科学家格哈德·瑞普领导的科研小组,首次成功地实现了用单原子存储量子信息——将单个光子的量子状态写入一个铷原子中,经过180微秒后将其读出。最新突破有望助力科学家设计出功能强大的量子计算机,并让其远距离联网构建“量子网络”。
首次实现线性方程组量子算法
2013年6月8日,由中国科学技术大学潘建伟院士领衔的量子光学和量子信息团队的陆朝阳、刘乃乐研究小组,在国际上首次成功实现了用量子计算机求解线性方程组的实验。该研究成果发表在6月7日出版的《物理评论快报》上。
迄今为止,世界上还没有真正意义上的量子计算机。但是,世界各地的许多实验室正在以巨大的热情追寻着这个梦想。如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了。已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。

量子计算机有多强大

4. 量子计算机有多强大

问题一:量子计算机有多强大  普通的数字计算机在0和1的二进制系统上运行,称为“比特”(bit)。但量子计算机要远远更为强大。它们可以在量子比特(qubit)上运算,可以计算0和1之间的数值。假想一个放置在磁场中的原子,它像陀螺一样旋转,于是它的旋转轴可以不是向上指就是向下指。常识告诉我们:原子的旋转可能向上也可能向下,但不可能同时都进行。但在量子的奇异世界中,原子被描述为两种状态的总和,一个向上转的原子和一个向下转的原子的总和。在量子的奇妙世界中,每一种物体都被使用所有不可思议状态的总和来描述。 
  实际运用 
  D-Wave 量子计算机-首台商用量子计算机在2007年,加拿大计算机公司D-Wave展示了全球首台量子计算机“Orion(猎户座)”,它利用了量子退火效应来实现量子计算。该公司此后在2011年推出具有128个量子位的D-Wave One型量子计算机并在2013年宣称NASA与谷歌公司共同预定了一台具有512个量子位的D-Wave Two量子计算机。 
  NSA加密破解计划 
  2014年1月3日,美国国家安全局(NSA)正在研发一款用于破解加密技术的量子计算机,希望破解几乎所有类型的加密技术。投入巨资 投入4.8亿进行“渗透硬目标” 
  首台编程通用量子计算机 
  2009年11月15日,世界首台可编程的通用量子计算机正式在美国诞生。不过根据初步的测试程序显示,该计算机还存在部分难题需要进一步解决和改善。科学家们认为,可编程量子计算机距离实际应用已为期不远。 
  单原子量子信息存储首次实现 
  2013年5月,德国马克斯普朗克量子光学研究所的科学家格哈德・瑞普领导的科研小组,首次成功地实现了用单原子存储量子信息――将单个光子的量子状态写入一个铷原子中,经过180微秒后将其读出。最新突破有望助力科学家设计出功能强大的量子计算机,并让其远距离联网构建“量子网络”。 
  首次实现线性方程组量子算法 
  2013年6月8日,由中国科学技术大学潘建伟院士领衔的量子光学和量子信息团队的陆朝阳、刘乃乐研究小组,在国际上首次成功实现了用量子计算机求解线性方程组的实验。该研究成果发表在6月7日出版的《物理评论快报》上。 
  迄今为止,世界上还没有真正意义上的量子计算机。但是,世界各地的许多实验室正在以巨大的热情追寻着这个梦想。如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了。已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。 
  
   问题二:中国的光量子计算机真的很强大吗  5月3日,科技界迎来了一个振奋人心的消息:世界上第一台超越早期经典计算机的光量子计算机在中国诞生!这标志着我国的量子计算机研究领域已迈入世界一流水平行列。据悉,该光量子计算机是由中科大、中国科学院-阿里巴巴量子计算实验室、浙江大学、中科院物理所等协同完成参与研发的,是货真价实的“中国造”。量子计算机是指利用量子相干叠加原理,理论上具有超快的并行计算和模拟能力的计算机。如果将传统计算机比作自行车,量子计算机就好比飞机。使用亿亿次的“天河二号”超级计算机求解一个亿亿亿变量的方程组,所需时间为100年。而使用一台万亿次的量子计算机求解同一个方程组,仅需0.01秒 
  
   问题三:“量子计算机”到底有多强  电子计算机是基于01变化,量子计算机是基于原子自旋方向的8个态变化,并行运算速度大增。三个原子就能相当于64位运算,四个就是128位,50个呢?不得了了啊!不过目前需要在超导环境下进行,耗能也是巨大的,慢慢等改进吧! 
  
   问题四:量子计算机到底有多厉害  首先,我们要明白,量子计算机是一种使用量子逻辑进行通用计算的装置。不同於电子计算机,量子计算用来存储资料的对象是量子位元,它使用量子演算法来进行资料操作。马约拉纳费米子反粒子就是自己本身的属性,或许是令量子计算机的制造变成现实的一个关键。 
  量子电脑分别对传统电脑的限制作了推广。量子计算机的输入用一个具有有限能级的量子系统来描述,如二能级系统,量子计算机的变换(即量子计算)包括所有可能的正变换。量子特性在提高运算速度、确保信息安全、增大信息容量和提高检测精度等方面可能突破现有经典信息系统的极限。 
  它与传统计算机的区别,因为传统计算机随着处理数据位数的增加所面临的困难线形增加,要分解一个129位的数字需要1600台超级计算机联网工作8个月,而要分解一个140位的数字所需的时间将是几百年。但是利用一台量子计算机,在几秒内就可得到结果,其运算能力相当于1000亿个奔腾处理器。足以知道其巨大的威力了吧! 
  
   问题五:超弦计算机比量子计算机和生物计算机强多少  超弦计算机比量子计算机和生物计算机强多少 
  量子计算机的特点为: 
  量子计算机的输入态和输出态为一般的叠加态,其相互之间通常不正交; 
  量子计算机中的变换为所有可能的么正变换。得出输出态之后,量子计算机对输出态进行一定的测量,给出计算结果。 
  由此可见,量子计算对经典计算作了极大的扩充,经典计算是一类特殊的量子计算。量子计算最本质的特征为量子叠加性和量子相干性。量子计算机对每一个叠加分量实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算机的输出结果。这种计算称为量子并行计算。 
  无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干(也称“退相干”)。因此,要使量子计算成为现实,一个核心问题就是克服消相干。而量子编码是迄今发现的克服消相干最有效的方法。主要的几种量子编码方案是:量子纠错码、量子避错码和量子防错码。量子纠错码是经典纠错码的类比,是目前研究的最多的一类编码,其优点为适用范围广,缺点是效率不高。 
  迄今为止,世界上还没有真正意义上的量子计算机。但是,世界各地的许多实验室正在以巨大的热情追寻着这个梦想。如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。现在还很难说哪一种方案更有前景,只是量子点方案和超导约瑟夫森结方案更适合集成化和小型化。将来也许现有的方案都派不上用场,最后脱颖而出的是一种全新的设计,而这种新设计又是以某种新材料为基础,就像半导体材料对于电子计算机一样。研究量子计算机的目的不是要用它来取代现有的计算机。量子计算机使计算的概念焕然一新,这是量子计算机与其他计算机如光计算机和生物计算机等的不同之处。量子计算机的作用远不止是解决一些经典计算机无法解决的问题。 
  量子计算机是通过量子分裂式、量子修补式来进行一系列的大规模高精确度的运算的。其浮点运算性能是普通家用电脑的CPU所无法比拟的,量子计算机大规模运算的方式其实就类似于普通电脑的批处理程序,其运算方式简单来说就是通过大量的量子分裂,再进行高速的量子修补,但是其精确度和速度也是普通电脑望尘莫及的,因此造价相当惊人。目前唯一一台量子计算机仍在微软的硅谷老家中,尚在试验阶段,离投入使用还会有一段时间。量子计算机当然不是给我们用来玩电子游戏的,因为这好比拿激光切割机去切纸,其主要用途是例如象测量星体精确坐标、快速计算不规则立体图形体积、精确控制机器人或人工智能等需要大规模、高精度的高速浮点运算的工作。在运行这一系列高难度运算的背后,是可怕的能量消耗、不怎么长的使用寿命和恐怖的热量。 
  假设1吨铀235通过核发电机1天能提供7000万瓦伏电量,但这些电量在短短的10天就会被消耗殆尽,这是最保守的估计;如果一台量子计算机一天工作4小时左右,那么它的寿命将只有可怜的2年,如果工作6小时以上,恐怕连1年都不行,这也是最保守的估计;假定量子计算机每小时有70摄氏度,那么2小时内机箱将达到200度,6小时恐怕散热装置都要被融化了,这还是最保守的估计! 
  
   问题六:量子计算机到底有多强,咱先弄明白了它的  量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。量子计算机的概念源于对可逆计算机的研究。研究可逆计算机的目的是为了解决计算机中的能耗问题。 
  量子计算机最大的优势在于大幅缩短提取用户所需信息的时间,它可以在几天内解决传统计算机会花费数百万年才能处理的数据,因此未来的应用前景十分令人神往。 
  
   问题七:百度德尔塔:中国世界首台量子计算机,到底有多厉害  不知道。注意了,农业银行首页他们能瞬间监控,除了美国没有别人,可怕,他这是在制造混乱,违法。 
  量子计算机这玩意能搞定吗? 
  
   问题八:中国首台量子计算机有望问世,量子计算机有多强大  如果真的研制成功,那么所有的密码就都会被破解,原来的密码都是基于破解复杂性比较高 
  
   问题九:量子计算机与光子计算机生物计算机哪个更强大更有前途  量子计算机全世界有一些,但是由于能耗大,工作时温度高,需要降温设备,而且一台量子计算机的寿命不到一年。所以还在实验室中。就算研制成功了,也只有国家用的起,不可能像家用电脑一样流行。 量子计算机是所有计算机中计算速度最快的,是现在电脑的1万倍以上,甚至跟高。用量子计算机可以破解任何现在计算机中的密码,包括银行密码! 美国贝尔实验室宣布研制出世界上第一台光子计算机 分子计算级能和人脑连接,在医学方面应用最广,美国医学界已经用分子计算机做过假肢与人脑的连接试验,效果显著。 各种计算机都非常高级,量子计算机运行快,分子计算机可以和人脑互通。光子计算机虽然比量子计算机慢,但是由于运行环境要求较低,所以比较实用。 目前,能够代替电子计算机的就只有光子计算机了。 
  
   问题十:谁能讲讲量子计算机怎么厉害了,通俗点讲  要了解量子计算机,首先了解两个概念。 
  1。什么是量子理论 
  2。现有计算机的基础原理 
  (1):量子理论:通俗的说,就是将一切物质,都微观细分到不能再细的程度。在这个程度下来认识世界,其中的规律的总结就是量子理论。(较复杂,不可测量,迄今为止量子论还未完善) 
  量子计算机,就是要模拟这种超微观的量子的运动。来进行计算。因为量子理论尚未完善,所以目前还没有真正意义上的量子计算机。 
  (2):计算机是通过电路的“通电”和“断电”来进行计算的。也就是所谓的0和1。其实咱们在电脑前每一个指令,都被转换为最基本的“有电”和“没电”被CPU进行计算。 
  综上。量子计算机就是以量子理论为基础,量子并不像电路只分0,1(有电,没电),量子可以有多种状态。这样一来,计算速度就将大幅提高。 
  为什么能提高呢?简单举例:现有计算机的0,1计算方式,就像是人在地上划线,有一头牛就画1条线,有2头牛就画2条线,有100头牛就要画100条线,卖掉16头,就要擦掉16条线,问剩多少头牛,就要从新数一遍看有多少条线。(有电就是一条线“1”,没电就是没有线“0”) 而量子计算机就像是掌握了 *** 数字一样0~9.100头牛只需要在地上写“100”就行了,96头牛就在地上写“96”就行了。 所以你想啊,这对计算机来说,简直就是从原始社会步入文明社会了。那对人类来说,更是意义无限啊 
  以上。。希望能理解。

5. 量子计算机潜力巨大

科研人员在检查量子计算机低温处理设备。 人民视觉
  
 说起颠覆性技术,量子计算机都是当下 科技 界的闪耀明星。
    
 “在量子计算机面前,传统的计算机就像‘算盘’”
  
 近段时间,量子计算机领域频频传来重要进展:美国霍尼韦尔公司表示研发出64量子体积的量子计算机,性能是上一代的两倍;我国本源量子计算公司与中科院量子信息重点实验室等研究团队合作,在国际上首次发现一种控制、读取量子比特的新思路,为扩展量子比特提供了可能性……
  
 何为量子计算机?简单地说,当某个装置处理和计算的是量子信息,运行的是量子算法时,它就属于量子计算机。
  
 人们对量子计算机充满期待,与传统计算机遭遇瓶颈不无关系。近年来,传统计算机性能增长越来越困难, 探索 全新物理原理的高性能计算技术应运而生。
  
 “量子计算机是芯片尺寸突破经典物理极限的必然产物,是后摩尔时代的标志性技术。”中科院院士、中科院量子信息重点实验室主任郭光灿说,在微观状态下,量子是一个不可再分割的基本单位。人们所熟知的电子、光子等微观粒子,都是量子的一种表现形态。
  
 传统计算机用0和1储存与处理数据,俗称经典比特。量子计算机的神奇之处在于,它的基本计算单元——量子比特可以同时是0和1,即允许“叠加态”共存,从而拥有更强大的并行能力。举个例子,假使在800万本书里找一个单词,经典计算机的方法是一本一本地搜索,提高速度要用多个处理器来协同求解。而量子的叠加性质,与二进制算法的运行逻辑不同,使得量子计算机可以分身为800万台计算机同时寻找。“在量子计算机面前,传统的计算机就像‘算盘’。”郭光灿表示。
  
 据本源量子计算公司副总裁张辉介绍,在需要大规模计算的领域,量子计算机可一展拳脚,如助力先进材料制造和新能源开发等。在药物研发方面,量子计算机通过精准模拟各种分子、原子的自然演进,可帮助科研人员快速找到对付病毒的药物;在公共交通领域,量子计算能够迅速对复杂的交通状况进行分析预判,从而调度综合交通系统,最大限度避免道路拥堵。
  
 量子计算应用走出实验室,得益于它的工程化推进。当前,不少国家都把量子计算当作未来技术制高点,国内外知名的企业纷纷涉足量子计算,全球量子计算创业公司超过百家。郭光灿表示,量子计算发展比想象的更快,许多停留在纸面上的想法逐渐变成了现实。
  
 “如果以经典计算机发展进程来衡量,现在量子计算机处于早期的‘电子管时代’”
  
 量子计算机虽然前景广阔,但落地应用仍是长路漫漫。郭光灿指出,做出量子计算机需要满足三个基本条件:量子芯片、量子编码和量子算法。它们分别是实现量子计算的物理系统、确保计算可靠性的处理系统和提高运算速度的关键。
  
 “做量子计算机,首先要足够多的量子比特。”腾讯量子实验室高级研究员郑亚锐解释说。什么是量子比特?理论上,自然界中一切有量子效应的载体都可用作量子比特。经过长期 探索 ,科学家发现,超导、离子阱、光子、超冷原子、半导体量子点等,都存在量子效应,意味着能够用于开发量子计算机。而这些不同的体系,造就了量子计算机不同的技术实现路线。
  
 量子计算机走向实用,要控制多少个量子比特?郑亚锐说,一般认为要控制100万个量子比特。但眼下,工业界能控制的量子比特还不超过100个。
  
 在宏观环境下,如何保持微观环境下的量子特性,是量子计算机落地应用的另一个重要障碍。实现这一点,要求较长的相干时间(量子系统衰退的时间常数),以及非常高的保真度。“提高比特数量的同时,又不降低保真度,是学术界聚焦的难题。”郑亚锐说。
    
 目前,多数开发者选择的是超导和半导体两条路线,两者的工程化、工艺化也快速推进。开发者希望,借助先进的半导体、集成电路工艺,在推进量子计算机研制的同时,为未来量子计算机与经典计算机的潜在融合做准备。
  
 从电子管到晶体管,再到集成电路,随着材料和工艺的迭代,经典计算机性能不断提升。“如果以经典计算机发展进程来衡量,现在量子计算机处于早期的‘电子管时代’。”张辉说,现在量子计算机还很“笨”,比智能手机、手提电脑的速度要慢得多。量子计算机也要经历一个发展过程。
  
 “量子计算技术是颠覆性技术,关系到未来发展的基础计算能力”
  
 张辉认为,真正衡量量子计算能力,是用它来解决问题时,与经典计算相比谁消耗的资源更少。
  
 “目前量子计算机还没有找到比较合适的应用场景。”金奇奂认为,真正意义的量子计算机,不能单单证明它能比经典计算机做得好,而是要做出更有价值的工作。如果只能处理某一个专门问题,量子计算机只是一个高效的“伐木工”,知道如何利用木头做家具,才是真正有用的量子计算机。
  
 科学家预测,未来10至15年,科学界有可能操纵100量子比特,从而真正实现“量子优势”。郭光灿说,经典信息技术时代,我国是跟踪者、模仿者,量子计算是我国成为未来信息技术引领者的机遇。“量子计算技术是颠覆性技术,关系到未来发展的基础计算能力。谁先把量子计算机搞出来,谁就占据了量子信息时代的制高点。”
  
 开发量子计算机门槛较高。成立2年来,本源量子计算公司仅在硬件上就投入数亿元。但科研人员表示,量子计算就像一个山洞,不知道里面有没有“宝藏”,但一定要有勇气冲进去,看看里面什么样。
  
 5年前,中国科学院与阿里巴巴集团建立联合实验室,共同在量子信息科学领域开展前瞻性研究,这是国内较早在量子计算上的布局。近些年,在量子计算领域,我国科研人员发表了不少有影响力的研究成果。在张辉看来,我国与国际上的“领头羊”的差距主要不在科研上,而在工程、工艺方面。量子计算机是一个整体,芯片之外,测控、软件、算法等同样应高度重视。“哪怕几根导线之间微弱的干扰,都会影响整体计算性能。”
  
 量子计算机与经典计算机不是对抗关系,不会全面替代经典计算机。“玩电脑 游戏 ,我们永远用不着量子计算机。”张辉说,经典计算机发展至今,已经能处理日常中绝大部分任务,未来两者应该会相互融合。
  
 郭光灿认为,掌握量子计算机的关键核心技术急不得,需要下真功夫。只有经过深入细致钻研,经过技术沉淀,才有可能实现突破。尤其是要重视解决工程上的问题,才有可能抓住量子计算机的发展机遇。

量子计算机潜力巨大

6. 量子计算机潜力巨大

科研人员在检查量子计算机低温处理设备。 人民视觉
  
 说起颠覆性技术,量子计算机都是当下 科技 界的闪耀明星。
    
 “在量子计算机面前,传统的计算机就像‘算盘’”
  
 近段时间,量子计算机领域频频传来重要进展:美国霍尼韦尔公司表示研发出64量子体积的量子计算机,性能是上一代的两倍;我国本源量子计算公司与中科院量子信息重点实验室等研究团队合作,在国际上首次发现一种控制、读取量子比特的新思路,为扩展量子比特提供了可能性……
  
 何为量子计算机?简单地说,当某个装置处理和计算的是量子信息,运行的是量子算法时,它就属于量子计算机。
  
 人们对量子计算机充满期待,与传统计算机遭遇瓶颈不无关系。近年来,传统计算机性能增长越来越困难, 探索 全新物理原理的高性能计算技术应运而生。
  
 “量子计算机是芯片尺寸突破经典物理极限的必然产物,是后摩尔时代的标志性技术。”中科院院士、中科院量子信息重点实验室主任郭光灿说,在微观状态下,量子是一个不可再分割的基本单位。人们所熟知的电子、光子等微观粒子,都是量子的一种表现形态。
  
 传统计算机用0和1储存与处理数据,俗称经典比特。量子计算机的神奇之处在于,它的基本计算单元——量子比特可以同时是0和1,即允许“叠加态”共存,从而拥有更强大的并行能力。举个例子,假使在800万本书里找一个单词,经典计算机的方法是一本一本地搜索,提高速度要用多个处理器来协同求解。而量子的叠加性质,与二进制算法的运行逻辑不同,使得量子计算机可以分身为800万台计算机同时寻找。“在量子计算机面前,传统的计算机就像‘算盘’。”郭光灿表示。
  
 据本源量子计算公司副总裁张辉介绍,在需要大规模计算的领域,量子计算机可一展拳脚,如助力先进材料制造和新能源开发等。在药物研发方面,量子计算机通过精准模拟各种分子、原子的自然演进,可帮助科研人员快速找到对付病毒的药物;在公共交通领域,量子计算能够迅速对复杂的交通状况进行分析预判,从而调度综合交通系统,最大限度避免道路拥堵。
  
 量子计算应用走出实验室,得益于它的工程化推进。当前,不少国家都把量子计算当作未来技术制高点,国内外知名的企业纷纷涉足量子计算,全球量子计算创业公司超过百家。郭光灿表示,量子计算发展比想象的更快,许多停留在纸面上的想法逐渐变成了现实。
  
 “如果以经典计算机发展进程来衡量,现在量子计算机处于早期的‘电子管时代’”
  
 量子计算机虽然前景广阔,但落地应用仍是长路漫漫。郭光灿指出,做出量子计算机需要满足三个基本条件:量子芯片、量子编码和量子算法。它们分别是实现量子计算的物理系统、确保计算可靠性的处理系统和提高运算速度的关键。
  
 “做量子计算机,首先要足够多的量子比特。”腾讯量子实验室高级研究员郑亚锐解释说。什么是量子比特?理论上,自然界中一切有量子效应的载体都可用作量子比特。经过长期 探索 ,科学家发现,超导、离子阱、光子、超冷原子、半导体量子点等,都存在量子效应,意味着能够用于开发量子计算机。而这些不同的体系,造就了量子计算机不同的技术实现路线。
  
 量子计算机走向实用,要控制多少个量子比特?郑亚锐说,一般认为要控制100万个量子比特。但眼下,工业界能控制的量子比特还不超过100个。
  
 在宏观环境下,如何保持微观环境下的量子特性,是量子计算机落地应用的另一个重要障碍。实现这一点,要求较长的相干时间(量子系统衰退的时间常数),以及非常高的保真度。“提高比特数量的同时,又不降低保真度,是学术界聚焦的难题。”郑亚锐说。
    
 目前,多数开发者选择的是超导和半导体两条路线,两者的工程化、工艺化也快速推进。开发者希望,借助先进的半导体、集成电路工艺,在推进量子计算机研制的同时,为未来量子计算机与经典计算机的潜在融合做准备。
  
 从电子管到晶体管,再到集成电路,随着材料和工艺的迭代,经典计算机性能不断提升。“如果以经典计算机发展进程来衡量,现在量子计算机处于早期的‘电子管时代’。”张辉说,现在量子计算机还很“笨”,比智能手机、手提电脑的速度要慢得多。量子计算机也要经历一个发展过程。
  
 “量子计算技术是颠覆性技术,关系到未来发展的基础计算能力”
  
 张辉认为,真正衡量量子计算能力,是用它来解决问题时,与经典计算相比谁消耗的资源更少。
  
 “目前量子计算机还没有找到比较合适的应用场景。”金奇奂认为,真正意义的量子计算机,不能单单证明它能比经典计算机做得好,而是要做出更有价值的工作。如果只能处理某一个专门问题,量子计算机只是一个高效的“伐木工”,知道如何利用木头做家具,才是真正有用的量子计算机。
  
 科学家预测,未来10至15年,科学界有可能操纵100量子比特,从而真正实现“量子优势”。郭光灿说,经典信息技术时代,我国是跟踪者、模仿者,量子计算是我国成为未来信息技术引领者的机遇。“量子计算技术是颠覆性技术,关系到未来发展的基础计算能力。谁先把量子计算机搞出来,谁就占据了量子信息时代的制高点。”
  
 开发量子计算机门槛较高。成立2年来,本源量子计算公司仅在硬件上就投入数亿元。但科研人员表示,量子计算就像一个山洞,不知道里面有没有“宝藏”,但一定要有勇气冲进去,看看里面什么样。
  
 5年前,中国科学院与阿里巴巴集团建立联合实验室,共同在量子信息科学领域开展前瞻性研究,这是国内较早在量子计算上的布局。近些年,在量子计算领域,我国科研人员发表了不少有影响力的研究成果。在张辉看来,我国与国际上的“领头羊”的差距主要不在科研上,而在工程、工艺方面。量子计算机是一个整体,芯片之外,测控、软件、算法等同样应高度重视。“哪怕几根导线之间微弱的干扰,都会影响整体计算性能。”
  
 量子计算机与经典计算机不是对抗关系,不会全面替代经典计算机。“玩电脑 游戏 ,我们永远用不着量子计算机。”张辉说,经典计算机发展至今,已经能处理日常中绝大部分任务,未来两者应该会相互融合。
  
 郭光灿认为,掌握量子计算机的关键核心技术急不得,需要下真功夫。只有经过深入细致钻研,经过技术沉淀,才有可能实现突破。尤其是要重视解决工程上的问题,才有可能抓住量子计算机的发展机遇。
  
 《 人民日报 》( 2020年07月20日 19 版)

7. 量子计算机潜力巨大

 来源:海外网
      科研人员在检查量子计算机低温处理设备。 人民视觉
   说起颠覆性技术,量子计算机都是当下 科技 界的闪耀明星。
      “在量子计算机面前,传统的计算机就像‘算盘’” 
   近段时间,量子计算机领域频频传来重要进展:美国霍尼韦尔公司表示研发出64量子体积的量子计算机,性能是上一代的两倍;我国本源量子计算公司与中科院量子信息重点实验室等研究团队合作,在国际上首次发现一种控制、读取量子比特的新思路,为扩展量子比特提供了可能性……
   何为量子计算机?简单地说,当某个装置处理和计算的是量子信息,运行的是量子算法时,它就属于量子计算机。
   人们对量子计算机充满期待,与传统计算机遭遇瓶颈不无关系。近年来,传统计算机性能增长越来越困难, 探索 全新物理原理的高性能计算技术应运而生。
   “量子计算机是芯片尺寸突破经典物理极限的必然产物,是后摩尔时代的标志性技术。”中科院院士、中科院量子信息重点实验室主任郭光灿说,在微观状态下,量子是一个不可再分割的基本单位。人们所熟知的电子、光子等微观粒子,都是量子的一种表现形态。
   传统计算机用0和1储存与处理数据,俗称经典比特。量子计算机的神奇之处在于,它的基本计算单元——量子比特可以同时是0和1,即允许“叠加态”共存,从而拥有更强大的并行能力。举个例子,假使在800万本书里找一个单词,经典计算机的方法是一本一本地搜索,提高速度要用多个处理器来协同求解。而量子的叠加性质,与二进制算法的运行逻辑不同,使得量子计算机可以分身为800万台计算机同时寻找。“在量子计算机面前,传统的计算机就像‘算盘’。”郭光灿表示。
   据本源量子计算公司副总裁张辉介绍,在需要大规模计算的领域,量子计算机可一展拳脚,如助力先进材料制造和新能源开发等。在药物研发方面,量子计算机通过精准模拟各种分子、原子的自然演进,可帮助科研人员快速找到对付病毒的药物;在公共交通领域,量子计算能够迅速对复杂的交通状况进行分析预判,从而调度综合交通系统,最大限度避免道路拥堵。
   量子计算应用走出实验室,得益于它的工程化推进。当前,不少国家都把量子计算当作未来技术制高点,国内外知名的企业纷纷涉足量子计算,全球量子计算创业公司超过百家。郭光灿表示,量子计算发展比想象的更快,许多停留在纸面上的想法逐渐变成了现实。
    “如果以经典计算机发展进程来衡量,现在量子计算机处于早期的‘电子管时代’” 
   量子计算机虽然前景广阔,但落地应用仍是长路漫漫。郭光灿指出,做出量子计算机需要满足三个基本条件:量子芯片、量子编码和量子算法。它们分别是实现量子计算的物理系统、确保计算可靠性的处理系统和提高运算速度的关键。
   “做量子计算机,首先要足够多的量子比特。”腾讯量子实验室高级研究员郑亚锐解释说。什么是量子比特?理论上,自然界中一切有量子效应的载体都可用作量子比特。经过长期 探索 ,科学家发现,超导、离子阱、光子、超冷原子、半导体量子点等,都存在量子效应,意味着能够用于开发量子计算机。而这些不同的体系,造就了量子计算机不同的技术实现路线。
   量子计算机走向实用,要控制多少个量子比特?郑亚锐说,一般认为要控制100万个量子比特。但眼下,工业界能控制的量子比特还不超过100个。
   在宏观环境下,如何保持微观环境下的量子特性,是量子计算机落地应用的另一个重要障碍。实现这一点,要求较长的相干时间(量子系统衰退的时间常数),以及非常高的保真度。“提高比特数量的同时,又不降低保真度,是学术界聚焦的难题。”郑亚锐说。
     目前,多数开发者选择的是超导和半导体两条路线,两者的工程化、工艺化也快速推进。开发者希望,借助先进的半导体、集成电路工艺,在推进量子计算机研制的同时,为未来量子计算机与经典计算机的潜在融合做准备。
   从电子管到晶体管,再到集成电路,随着材料和工艺的迭代,经典计算机性能不断提升。“如果以经典计算机发展进程来衡量,现在量子计算机处于早期的‘电子管时代’。”张辉说,现在量子计算机还很“笨”,比智能手机、手提电脑的速度要慢得多。量子计算机也要经历一个发展过程。
    “量子计算技术是颠覆性技术,关系到未来发展的基础计算能力” 
   张辉认为,真正衡量量子计算能力,是用它来解决问题时,与经典计算相比谁消耗的资源更少。
   “目前量子计算机还没有找到比较合适的应用场景。”金奇奂认为,真正意义的量子计算机,不能单单证明它能比经典计算机做得好,而是要做出更有价值的工作。如果只能处理某一个专门问题,量子计算机只是一个高效的“伐木工”,知道如何利用木头做家具,才是真正有用的量子计算机。
   科学家预测,未来10至15年,科学界有可能操纵100量子比特,从而真正实现“量子优势”。郭光灿说,经典信息技术时代,我国是跟踪者、模仿者,量子计算是我国成为未来信息技术引领者的机遇。“量子计算技术是颠覆性技术,关系到未来发展的基础计算能力。谁先把量子计算机搞出来,谁就占据了量子信息时代的制高点。”
   开发量子计算机门槛较高。成立2年来,本源量子计算公司仅在硬件上就投入数亿元。但科研人员表示,量子计算就像一个山洞,不知道里面有没有“宝藏”,但一定要有勇气冲进去,看看里面什么样。
   5年前,中国科学院与阿里巴巴集团建立联合实验室,共同在量子信息科学领域开展前瞻性研究,这是国内较早在量子计算上的布局。近些年,在量子计算领域,我国科研人员发表了不少有影响力的研究成果。在张辉看来,我国与国际上的“领头羊”的差距主要不在科研上,而在工程、工艺方面。量子计算机是一个整体,芯片之外,测控、软件、算法等同样应高度重视。“哪怕几根导线之间微弱的干扰,都会影响整体计算性能。”
   量子计算机与经典计算机不是对抗关系,不会全面替代经典计算机。“玩电脑 游戏 ,我们永远用不着量子计算机。”张辉说,经典计算机发展至今,已经能处理日常中绝大部分任务,未来两者应该会相互融合。
   郭光灿认为,掌握量子计算机的关键核心技术急不得,需要下真功夫。只有经过深入细致钻研,经过技术沉淀,才有可能实现突破。尤其是要重视解决工程上的问题,才有可能抓住量子计算机的发展机遇。
     《人民日报》(2020年07月20日 第 19 版)

量子计算机潜力巨大

8. 量子计算机是什么,相比传统计算机有何厉害之处?

自1946年第一台电脑发明至今,随着半导体产业的数次飞跃,计算机性能得到了突飞猛进的发展,2016年美国劳伦斯伯克利国家实验室将现有的计算机晶体管制程缩小到了1纳米,打破了7纳米的物理极限,虽然说这代表着在同等体积下芯片可以集成更多的电路,但是由于晶体管大小仅与几个原子相当就会发生量子隧穿效应,而在量子领域传统物理学将不再适用,传统计算机也无法工作。
因此早在上世纪80年代科学家们就开始思考,能不能利用量子特性制造出一台量子计算机,在传统计算机处理数据时,晶体管就像是一个开关,它允许或者阻止电流通过,由此形成的高低电信号就可以写成0,1这两个数,也就是计算机信息量的最小单位比特。

它的状态是唯一的,只能代表0或1其中的一个,而在量子计算机中量子比特却可以同时处于0或1的叠加状态,就像薛定谔的猫一样,只要我们不打开盒子观察,那么里面的猫就是一只即死又活的猫,这种状态就被称为“量子叠加态”。
它为量子并行计算提供了基础,比如在传统的计算机中四位比特可以表示16种组合,但你只能选择其中一种,而在量子计算机中你可以认为这16种状态同时存在,即一台N位量子计算机=2的N次方台N位传统计算机进行计算。
由此可见每增加一位量子,计算机的优势就会呈现指数级增长,但是如何利用这一优势将经典算法转化为量子算法成为了科学界的一大难题。

1994年美国数学家彼得-秀尔发现,利用量子计算机进行整数的质因数分解,花费的时间仅为多项式时间,它比传统已知最快的整数分解法快了一个指数的差异,而现在广泛使用的RSA加密算法,它的算法基础就在于人们不能有效地分解大整数,比如一个300位的十进制整数,利用现在最快的计算机进行质因数分解需要花费从宇宙大爆炸开始至今的时间。
而利用秀尔算法至需要不到一分钟的时间,这对于加密系统来说无疑是一个巨大的冲击,所幸现实情况是我们还制造不出能够破解RSA算法的大型量子计算机。
2019年10月23日谷歌在《自然》杂志上发布论文表示,它们研发的量子计算机成功在3分20秒的时间里,完成了传统计算机需要一万年才能处理的问题,并声称这是全球首次实现“量子霸权”,即量子计算机的表现远远超过了传统计算机。

但是这台量子计算机只有53个量子位,仅破解加密系统就至少需要几千个量子位,所以说实现量子霸权还远远不够,想要将量子计算机真正应用大加密破译,药物研制,保密通信等领域仍有很长的路要走。